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FOREWORD 

 

The Self Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university’s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to 

the topic of study and to kindle the learner’s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every 

possibility for some omission or inadequacy in few areas or topics, 

which would definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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BLOCK-1 GENERAL THEORY OF 

INTEGRATION 
 

Introduction to Block-1 

The purpose of this book General theory of Integration is to present an 

exposition of a relatively new theory of the integral (variously called the 

―generalized Riemann integral‖, the ―gauge integral‖, the ―Henstock-

Kurzweil integral‖, etc.) that corrects the defects in the classical Riemann 

theory and both simplifies and extends the Lebesgue theory of 

integration. Not wishing to tell only the easy part of the story, we give 

here a complete exposition of a theory of integration, initiated around 

1960 by Jaroslav Kurzweil and Ralph Henstock. 

Although much of this theory is at the level of an undergraduate 

course in real analysis, we are aware that some of the more subtle aspects 

go slightly beyond that level. Hence this monograph is probably most 

suitable as a text in a first-year graduate course, although much of it can 

be readily mastered by less advanced students, or a teacher may simply 

skip over certain proofs. The principal defects in the Riemann integral 

are several. The most serious one is that the class of Riemann integrable 

functions is too small. 

In block-1 we will learn and understand about Gauges and Integrals, The 

Riemann integrals, Basic properties of the Integrals, Fundamental 

theorems of calculus, The Sakes-Henstock lemma. 
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UNIT -1 GAUGES AND INTEGRALS  

 

STRUCTURE 

1.0 Objective 

1.1 Introduction 

1.2 Length and Tags 

1.3 Riemann Sums 

1.4 The Right –left procedure 

1.5 Various limiting process 

1.6 Let us sum up 

1.7 Keywords 

1.8 Questions for review 

1.9 Suggestive readings and references 

1.10 Answers to check your progress 

1.0 OBJECTIVE 

 

In this unit we will learn and understand about Length and tags, Riemann 

sums, The right –left procedure, various limiting process. 

1.1 INTRODUCTION 

 

The technique of functional integration is used in statistical mechanics, 

quantum mechanics, control theory, signal processing and many other 

areas. 

This book presents a mathematically rigorous theory of integration and 

variation in function spaces, including theorems on taking limits under 

the integral sign. The integration is based on the generalised Riemann 

integral rather than measure theory, and provides a unified mathematical 

framework for the diverse applications in theoretical physics and 

information science. 

In particular, this book presents a solution to the long-standing problem 
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of providing a rigorous definition and calculus of the Feynman integral 

in quantum mechanics. 

The symbol R always denotes the real number system, the properties of 

which we assume to be familiar to the reader. Our principal elementary 

reference will be the third edition of the book of the author and D.r 

Sherbert, which will be referred to as [B-S], but there are many other 

books at that level to which the reader can refer.  

Our terminology and notation are standard. If A and B are subsets of a 

set X, we denote their union by ,A B  their intersection by ,A B  

and the relative complement by A-B. If X is understood we sometimes 

denote X – A by .cA  

We denote the distance between two real numbers x, y by  dist 

 , : | |.x y x y    

It is clear that, for all , , ,x y z R  then  

(0) dist  , 0;x y   

(1)  dist  , 0x y   if and only if ;x y  

(2) dist  ,x y   dist  , ;y x  

(3) dist  ,x z   dist  ,x y   dist  , .y z    

If x R  and  ,A R  where 0,A   we sometimes write dist  , :x A   

INF {dist  , :x y y A } for the distance between x and A. The closed 

neighborhood of x with radius 0r   is the set  

      ; : :| | ,B x r y R x y r  

Which is also called the closed ball with center x and radius r. The open 

neighborhood of x with radius 0r   is the set  

      ; : :| | ,B x r y R x y r  

Which is also called the open ball with center x and radius r.  

We are concerned mainly with bounded intervals in .R  If ,a b R  and 

,a b  we use the notations  
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      , : : ;a b x R a x b  

      , : : ;a b x R a x b  

      , : : ;a b x R a x b  

      , : : .a b x R a x b  

The point a is called the left endpoint and the point b is called the right 

endpoint of each of these intervals. Intervals of the first kind contain both 

of their endpoints and are called bounded closed intervals, or compact 

intervals. Intervals of the second kind contain neither of their endpoints 

and are called bounded open intervals. Intervals of the third and fourth 

kinds contain exactly one of their endpoints and are called bounded 

closed -open and bounded open-closed intervals, respectively.  

We say that an interval in R is degenerate if it contains at most one point, 

and that it is nondegenerate if it contains at least two points, in which 

case it contains infinitely many points. We say that two intervals in R are 

disjoint if their intersection is empty; that is, if they have no common 

points. Similarly, we will say that two intervals in R are nonoverlapping 

if their intersection is either empty or contains at most one point, which 

is necessarily an endpoint of both intervals.  

If  : ,I a b  is a nondegenerate compact interval in ,R  then a partition 

(or a division) of I is a finite collection    
1

: : 1,.....,
n

i i i
P I i n I


    

of nonoverlapping compact subintervals iI  such that ...... .i nI I I    

It is always possible to arrange the intervals in increasing order. i.e., such 

that 1max mini iI I   for 1,...., 1.i n   If we let 0 :x a  and 

: maxi ix I  for 1,...., ,i n  we can write the intervals as  

     1 0 1 2 1 2 1: , , : , ,.........., : , .n n nI x x I x x I x x    

Alternatively, we can define a partition P of  ,I a b by specifying a 

finite ordered set of points in I: 

0 1 2 ...... ,na x x x x b       

And defining the subintervals iI  by 
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 1: ,i i iI x x  for 1,...., .i n  

Note that n + 1 points of I are required to define a partition P of I into n 

intervals, that the initial partition point is always the left endpoint of I, 

and the final partition point is always the right endpoint of I. 

Furthermore, if the subintevals in P are written in increasing order, then 

the left endpoint of iI  is the partition point 1ix   and the right endpoint of 

iI  is the partition point ix  for all I = 1,….,n. Ordinarily, we will require 

that the subintervals in a partition are nondegenerate and that the 

partition points are distinct, for this can be obtained by simply discarding 

degenerate subintervals or identical partition points.  

In the following we will think of a partition of I as either a collection of 

nonoverlapping subintervals, or as a finite ordered set of partition points.   

1.2 LENGTH AND TAGS 

 

If  : , ,I a b  with ,a b  we define the length of I to be    : .l I b a   

Note that   0,l I   and that   0l I   if and only if the endpoints of I 

coincide. Similarly, the length of any interval having one of the three 

forms:   

     , , , , ,a b a b a b  

is also defined to be equal to b – a. In particular,  0 0.l   If 

 : 1,....,iP I i n   is a partition of an interval  ,I a b  such that 

for each subinterval iI  there is assigned a point ,i it I  then we call it  a 

tag of iI . In this case we say that the partition is tagged and we often 

write  

     
1

: , : 1,...., , ,
n

i i i i i
P I t i n I t


    

or merely   : ,i iP I t . Thus, a tagged partition of I is a set of ordered 

pairs   , : 1,....,i iI t i n  consisting of intervals iI  that form a 

partition of I, and points i it I  that are tags of the intervals .iI  We write 
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a dot over the symbol for a partition to indicate that it is a tagged 

partition.  It is evident that a given partition of I can be tagged in 

infinitely many ways by choosing different points it  as tags.  

1.3 RIEMANN SUMS 

 

If a function f  is defined on a (nondegenerate) compact interval I with 

values.  

In ,R  we often write : .f I R  If   ,i iP I t  is any tagged partition 

of I, then the sum  

     
1

: :
n

i i

i

S f P f t l I


  

is called the Riemann sum of f corresponding to .P  If  1,i i iI x x  for 

1,...., ,i n  then this Riemann sum has the form  

     1
1

: :
n

i i i

i

S f P f t x x 



   

It will be familiar to the reader form calculus courses that if   0f x   

for all ,x I  then this Riemann sum is an approximation to the ―area 

under the graph of  y f x ‖ . 

The Riemann approach to the integral of the function f on I is to define 

the integral as a ―limit‖ of the Riemann sums as the partitions are taken 

to be ―finer and finer‖ (in some appropriate sense).  

It will be noted that if some of the subintervals iI  in P  are degenerate 

(or if some of the partition points coincide), then the corresponding terms 

in the Riemann sums  ;S f P  vanish. Thus, if we discard these 

degenerate subintervals, then the value of the Riemann sum is not 

changed. Consequently, we will ordinarily assume that the subintervals 

appearing in our partitions are nondegenerate.  

1.4 THE RIGHT-LEFT PROCEDURE  
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In working with Riemann sums, it is sometimes useful to have some (or 

all) of the tags be endpoints of the subintervals. This can easily be 

arranged by using the right-left procedure: If    1
1

: , ,
n

i i i
i

P x x t


  and 

if the tag kt  is an interior point of the subinterval 1,i ix x , then we let 

*P  be obtained from P  by adding the new partition point : ,kt   so 

that  

0 1....... ..... .k k na x x x x b         

We now tag both subintervals  1,kx   and  , kx  by using the tag 

;kt   hence   is the right endpoint of the first of these subintervals, 

and the left endpoint of the second of these subintervals. We observe that 

since  

           1 1 ,k k k k k k kf t x x f t x f t x        

Then the Riemann sums  :S f P  and  : *S f P  give the same value. 

Of course, it is also possible to reverse this process and consolidate two 

abutting subintervals that have the same point as tag. When we do this, 

the tag is no longer an endpoint of the resulting subinterval.   

Thus, in dealing with tagged partitions, we may assume that: 

i. all of the tags are endpoints of the subintervals, or  

ii. no tag, except possibly a or b, is an endpoint of the subintervals, or  

iii. no point is the tag of two distinct subintervals.  

Sometimes it is convenient to make one of these choices.  

Subpartitions  

By a subpartition we mean a subset of a partition. Similarly, a tagged 

subparttion is a subset of a tagged partition. If   1
1

, ,
m

j j j
j

Q y y s


     

is a tagged subpartition of  , ,a b  we will also use the notation 

 :S f Q  for    
1

1 .
m

j j jj
f s y y


   

1.5 VARIOUS LIMITING PROCESSES 
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The precise type of limiting proce4ss that is used to define the integral 

varies somewhat depending on the text book. The ―traditional Riemann 

method‖ is to require that the Riemann sums  :S f P  approach a limit 

as the maximum length of the subintervals in the partition approaches 

zero. This method has the advantage that it can also be applied to 

functions that have their values in the complex number system, or in the 

finite-dimensional space n   (or even in a Banach space). This method 

is discussed in detail in the third edition of  .B S   

A popular alternative method – often attributed solely to Gaston Darboux 

(1842-1917), although Giulio Ascoil (1843 – 1896), Henery J.S. Simth 

(1826-1883) and Karl J. Thomae (1840 – 1921) employed a similar 

approach in the same year (1875) – is to introduce ―lower‖ and ―upper 

integrals‖. The ―Darboux method‖ has certain technical advantages, but 

it also has at least two disadvantages. One is that it makes heavy use of 

the order properties of the real number system R, and so extensions to 

more general values of the function require further treatment. Another 

disadvantage is that in order to prove that exactly the same class of 

functions is integrable using the ―Darboux approach‖ as the traditional 

Riemann approach, it is necessary to prove a rather subtle theorem.  

In this book we will not use either the traditional Riemann or the 

Darboux approach in defining a limit of Riemann sums. Instead we shall 

employ a limiting process that was recently introduced independently by 

the Czech mathematician Jaroslav Kurzweil (b.1926) and the English 

mathematician Ralph Henstock (b. 1923).  

This method is slightly more complicated than the Riemann process, yet 

it yields an integral that is considerably more general and easier to use 

than the ordinary Riemann integra. It is more general in that the class 

general in that the class of integrable functions is considerably enlarged, 

and it is easier to use because it enables one two remove (or at least 

weaken) certain hypotheses that the Riemann theory requires.  

Since we get a lot more with little additional effort, we regard this 

approach to be a very significant advance.  
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In the Riemann approach to the integral, the measure of fineness of a 

partition is given by the maximum length of the subintervals ;iI   this 

means that the lengths of the subintervals are all less thaen or equal to a 

certain number.  

In the Kurzweil-Henstock approach that we adopt, more variation in the 

lengths of the subintervals is allowes as long as the subintervals over 

which the functions is ―rapidly changing‖ have ―small length‖. 

 Thus, in Figure 1.1, we make the approximation of the Riemann sums to 

the area a close one by taking the length of the intervals 3I   and 4I   

small, since fi is increasing rapidly near the right end of  , .a b   These is 

no particular need to make the lengths of 1I   and 2I   small, since the 

function is nearly constant over the first part of the interval  , .a b     

 

Figure 1.1 

Gauges  

The Kurzweil -Henstock approach places more attention on the tags than 

the traditional approach does. In fact, we shall govern the fineness of the 

tagged partition   
1

: ,
n

i i i
P I t


  by requiring that each subinterval iI  is 

contained in an interval    ; : ,i i i i i iB t t t      that depends on the 

tag .it  the following definitions will be used.  

Definition. If   : , ,I a b R  then a functions  : I R  is said to be a 

gauge on I if   0t   for all .t I  The interval around t I  

controlled by the gauge   is the interval 

     ; : , .B t t t t t t             
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Definition. Let  : ,I a b  and let   
1

: ,
n

t i i
P I t


 be a tagged 

partition. If   is a gauge on I, then we say that P  is   fine if  

   ,i i i i iI t t t t       for all 1,...., ;i n  

that is, if each subinterval iI  is contained in the interval 

 ;i iB t t    controlled by the point it . (See Figure 1.2.) 

Sometimes, when the tagged partition P  is  -fine, we say that 

P  is subordinate to   or write .P   

 

Remarks.  (a)   Only a tagged partition can be  -fine; 

hence it is not  

necessary to employ the word "tagged" in referring to  -fine 

partitions.  

(b)  If  1: , ,i i iI x x  then the partition   
1

: ,
n

i i i
P I t


  is  -fine 

if and only if    1i i i i i i it t x t x t t        for all  

1,...., .i n  

(c)  The partition   
1

: ,
n

i i i
P I t


 is  -fine if and only if  

 ;i i iI B t t      for all 1,...., .i n  

We now give some examples of gauges that will be instructive and 

useful. 

 Examples. (a)  If 0   is a positive number, then we can 

define a gauge  : I R  by setting   :t   for all .x I  

Such a gauge is called a constant gauge. We note that a 

partition  

  
1

: ,
n

i i i
P I t


  is  -fine for this constant gauge if and only if  

   , ;i i i iI t t B t        for all  1,...., .i n  
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This is readily seen to imply that   2il I   for all i. 

(b) If 1  and 2  are two gauges on  : , ,I a b  and if we define  

  :t   min     1 2,t t   for   ,t I  

Then it is immediate that   is a gauge on I. Clearly. every 

partition of I  that is  -fine is both 1 -fine and 2 -fine. This 

construction can be extended to any finite number of gauges on 

I. 

(c)  It is often convenient to choose a gauge   that will force 

a given point to be a tag for any  -fine partition,  

For example, let  : 0,1I   and let  
1

0 :
4

   and  
1

:
2

t t   for 

0 1.t   Evidently   is a gauge on I.  If P  is a  -fine 

partition of I, then 0 I  must belong to some subinterval

 1 10,I x  in P .  We claim that the tag 1t  for 1I must be 0. 

Indeed, since P  is  -fine, we must have 

     1 1 1 1 10, ,x t t t t       which implies that  

   1 11. 0t t   . 

Now, if 1 0,t   then  1 1

1

2
t t   so that  1 1 1 1

1
0,

2
t t t t     

contradicting the inequality  1, .  Therefore, we must have

1 0t  , as asserted.  

We will study this gauge further in the exercises at the end of this 

section.  

(d)  Let a c b   and let   be a gauge on  ,a b . If P   is a 

partition of  ,a c  that is  -fine and if P   is a partition of  ,c b  

that is  -fine, then P P   is a partition of  ,a b that is  -fine.  

 (e) Let a c b  and let   and    be gauges on he intervals 

 ,a c  and  , ,c b  respectively. If   is defined on  ,a b   by  
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, ,

: min , ,

, ,

t if t a c

t c c if t c

t if t c b



  



  


  


 

 

then   is a gauge on  ,a b . Moreover, if P   is a partition of 

 ,a c  that is - fine, and P   is a partition of  , ,c b  that is   -

fine, thenP P  is a partition of ,a b  that has c as a partition 

point. However, P P   may not be  -fine.  

(Why?)  

 (f) Let   and    be as in (d) and let *  be defined on [a, 

b] by 

 

     

    

     

1
min , , ,

2

* : min , ,

1
min , , .

2

t c t if t a c

t c c if t c

t t c if t c b



  



  
    

 


  


       

 

It is clear that *  is a gauge on  ,a b , and it is easy to show 

that every * - fine partition P  of  ,a b  must have c as a tag 

for any subinterval of P  that contains c. Thus, if we use the 

right-left procedure mentioned above, every * -fine partition 

P  of   ,a b  gives rise to a partition of  ,a c  that is  -fine, and to 

a partition of  ,c b  that is   -fine. 

Some Intuitive Remarks 

If I is a compact interval and   is a gauge on I, we can think that 

every point t I  "controls" (or has some "influence on") every 

point in the closed inter- val      ; , ,B t t t t t t            and 

hence on every subinterval contained in this interval. We note 

that some points in I control large intervals, and other points 

control very small intervals. The question arises whether, for an 

arbitrary gauge  , one can always find a tagged partition
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1

: ,
n

i i i
P I t


  where each tag it  controls the corresponding 

subinterval iI . 

The Existence of  -Fine Partitions 

It will now be shown that if   : ,I a b R is a nondegenerate 

compact interval, and if   is any gauge defined on I, then 

there always exist tagged partitions of I that are  -fine.  

This result was established and used in the space , 1,mR m  

by Pierre Cousin (1867-1933). It is a reflection of the 

compactness of I and is sometimes called the "Fineness 

Theorem".  

Cousin's Theorem. If  : ,I a b  is a nondegenerate compact 

interval in R  and   is a gauge on I, then there exists a partition 

of I that is  -fine.  

Proof. The proof is by contradiction. We suppose that I does 

not have a  -fine partition. Now let  
1

:
2

c a b   and bisect I 

into:     , , , .a c c b  

We claim that at least one of these subintervals does not have a 

 -fine partition; for, if they both have  -fine partitions, then the 

union of these partitions  would be a  -fine partition of [a, b], as 

was noted in Example 1.3(d). We let  1 : ,I a c  if this 

subinterval does not have any  -fine partition; otherwise,  

let  1 : , .I c b  Relabel 
1I  as  1 1,a b , let  1 1 1

1
:
2

c a b   and 

bisect 1I  into :  

   1 1 1 1, , , .a c c b  

As before, at least one of these subintervals does not have a  -

fine partition. We let  2

1 1: ,I a c  if it does not have a  -fine 

partition; otherwise, let  2

2 1: , .I c b Relabel 2I  as  2 2,a b  and 

bisect again. In this manner, we  
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obtain a sequence  nI  of compact subintervals of   ,I a b  

that is nested in the sense that  

  1 1, ..... .....n na b I I I I        

The Nested Intervals Property (see [B-S; p. 46]) implies that there 

is a unique number   that lies in all of the intervals nI . 

However, since   0,    the Archimedean Property of R  

implies that there exists p N  such that 

     /2 ,p pl I b a      

Whence    , .pI            Therefore the pair  ,pI   is 

a (trivial)  -fine partition of pI . But this is contrary to the 

construction of the nI  as subintervals of 1 that have no  -fine 

partitions.  

This contradiction shows that, for every gauge   on I, there 

exists a  -fine partition of I.   

Check Your Progress: 

1. Discuss about Riemann sums. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. State and prove Cousin’s theorem. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3. Explain about Various limiting process 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

1.6 LET US SUM UP 
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1. Given partition of I can be tagged in infinitely many ways by 

choosing different points it  as tags.  

2. If a function f  is defined on a (nondegenerate) compact interval I 

with values.  

3. In ,R  we often write : .f I R  If   ,i iP I t  is any tagged 

partition of I, then the sum  
     

1

: :
n

i i

i

S f P f t l I



 is called the 

Riemann sum of f corresponding to .P  

4. In working with Riemann sums, it is sometimes useful to have 

some (or all) of the tags be endpoints of the subintervals. This can easily 

be arranged by using the right-left procedure: If    1
1

: , ,
n

i i i
i

P x x t


  

and if the tag kt  is an interior point of the subinterval  1,i ix x , then we 

let *P  be obtained from P  by adding the new partition point : ,kt   

so that  

0 1....... ..... .k k na x x x x b       
 

5. Let  : ,I a b  and let   
1

: ,
n

t i i
P I t


 be a tagged partition. If 

  is a gauge on I, then we say that P  is   fine if  

   ,i i i i iI t t t t       for all 1,...., ;i n  

that is, if each subinterval iI  is contained in the interval 

 ;i iB t t    controlled by the point it . 

6. if   : ,I a b R is a nondegenerate compact interval, and 

if   is any gauge defined on I, then there always exist tagged 

partitions of I that are  -fine. 

7. If  : ,I a b  is a nondegenerate compact interval  

in R  and   is a gauge on I, then there exists a partition of I 

that is  -fine. 

1.7 KEY WORDS 

 

Tagged portions 

Arcmedian property 



Notes 

20 

Riemann Sums 

Various limiting process 

Non degenerate compact interval 

1.8 QUESTIONS FOR REVIEW 

1. Explain about Riemann sums 

2. Explain about the right left procedure 

3. Discuss about various limiting process 

1.9 SUGGESTIVE READINGS 

AND REFERENCES 

 

1. A. Modern theory of Integration - Robert G.Bartle 

2. The elements of Integration and Lebesgue Meassure 

3. A course on integration- Nicolas Lerner 

4. General theory of Integration- Dr. E.W. Hobson 

5. General theory of Integration- P.Muldowney 

6. General theory of functions and Integration- Angus 

E.Taylor 

1.10 ANSWERS TO CHECK 

YOUR PROGRESS 

 

1. See section 1.3 

2. See section 1.4 

3. See section 1.5 
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UNIT-2 THE RIEMANN AND 

GENERALIZED RIEMAN 

INTEGRALS  
 

STRUCTURE 

2.0 Objective 

2.1 Introduction 

2.2 Riemann Integral 

2.3 Generalized Riemann integrable on I 

2.4 Equivalence theorem 

2.5 Uniqueness theorem 

2.6 Consistency theorem 

2.7 The Lebesque integral 

2.8 Let us sum up 

2.9 Key words 

2.10 Questions for review 

2.11 Suggestive readings and references 

2.12 Answers to check your progress 

2.0 OBJECTIVE 

 

In this unit we will learn and understand about Riemann 

integral, Equivalence theorem, Uniqueness theorem, The 

Lebsque Integral. 

2.1 INTRODUCTION 

 

In the branch of mathematics known as real analysis, the Riemann 

integral, created by Bernhard Riemann, was the first rigorous definition 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Real_analysis
https://en.wikipedia.org/wiki/Bernhard_Riemann
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of the integral of a function on an interval. It was presented to the faculty 

at the University of Göttingen in 1854, but not published in a journal 

until 1868.
 

 For many functions and practical applications, the Riemann integral can 

be evaluated by the fundamental theorem of calculus or approximated 

by numerical integration. 

The Riemann integral is unsuitable for many theoretical purposes. Some 

of the technical deficiencies in Riemann integration can be remedied 

with the Riemann–Stieltjes integral, and most disappear with 

the Lebesgue integral though the latter does not have a satisfactory 

treatment of improper integrals. The gauge integral is a generalisation of 

the Lebesgue integral that is at once closer to the Riemann integral. 

These more general theories allow for the integration of more "jagged" or 

"highly oscillating" functions whose Riemann integral does not exist; but 

the theories give the same value as the Riemann integral when it does 

exist. 

We are now prepared to define the integrals. While we will 

be primarily interested in the (generalized Riemann) integral, we 

first define the Riemann integral for the purpose of comparison.  

2.2 RIEMANN INTEGRAL   

 

Definition. A function  :f I R  is said to be R-integrable 

(or Riemann integrable) on I if there exists a number 

A R  such that for every 0   there exists a number 0   

such that if   
1

: ,
n

i i i
P I t


  is  

any tagged partition of I such that  il I   for 1,...., ,i n  then  

 ; .S f P A    

The collection of all functions that are R-integrable on an 

interval I will often be denoted by  .R I   

We will now give two definitions of the generalized Riemann 

integral. The first one differs from Definition 2.3 only in that 

https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Interval_(mathematics)
https://en.wikipedia.org/wiki/University_of_G%C3%B6ttingen
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Riemann%E2%80%93Stieltjes_integral
https://en.wikipedia.org/wiki/Lebesgue_integral
https://en.wikipedia.org/wiki/Gauge_integral
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the constant    is replaced by a gauge on I; that is, by a 

function  : 0, .I     

2.3 GENERALIZED RIEMANN 

INTEGRAL ON I 

 

Definition. A function :f I R  is said to be generalized 

Riemann integrable on I if there exists a number B R  

such that for every 0   there exists a gauge  , on I such 

that if   
1

: ,
n

i i i
P I t


  is any tagged partition of I such that 

   i il I t  for 1,....., ,i n  then  

   1, ; .S f P B    

In practice, we will use the following definition of the integral, 

based on the notion of 6-fineness of a partition with respect to a 

gauge.  

Definition. A function :f I R  is said to be generalized 

Riemann integrable on I if there exists a number C R  

such that for every 0   there exists a gauge  , on I such 

that if   
1

: ,
n

i i i
P I t


  is any tagged partition of I that is  -

fine, then 

   1. ; .S f P C    

The collection of all functions that are generalized Riemann integrable 

on an interval I will be denoted by  * .R I  

It would be highly inconvenient if Definitions 2.4 and 2.5 led to different 

collections of integrable functions, or different values for the integral. 

We will now show that they do not do so.  

2.4 EQUIVALENCE THEOREM 
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Definitions 2.3 and 2.4 lead to equivalent integrals.  

Proof. Suppose that :f I R   is integrable in the sense of Definition 

1.6, so that there exists a number B such that given 0    there exists a 

gauge    as in Definition 1.6. We define    
1

:
2

t t     for ,t I   

so that    is a gauge on I. If   
1

,
n

i i i
P I t


   is a  -fine partition of I, 

then  

       
1 1

, , ,
2 2

i i i i i i i i iI t t t t t t t t      
 

         
 

 

Whence    i il I t   for all 1,..., .i n   consequently the condition 

in Definition 2.4 is satisfied and so inequality  1.   holds. We have 

shown that if P   is any   -fine partition of I, then  ; .S f P B     

Since 0    is arbitrary, then fi is integrable in the sense fo Definition 

1.7 with C = B.  

Conversely, suppose that Definition 1.7 is satisfied, so there exists a 

number C such that given 0    there exists a gauge    as in 

Definition 2.7. We define    : ,t t     so that    is a gauge on I. If 

the partition   
1

,
n

i i i
P I t


  satisfies  

     ,i i il I t t     

Then    ,i i i i iI t t t t        for all 1,...., ,i n  so that P  is 

  fine. Consequently the condition in Definition 1.7 is satisfied and so 

inequality  1.  holds. We have shown that if P  is any partition of I 

with    i il I t  for all 1,...., ,i n then  ; .S f P C    Since 

0   is arbitrary, then f is integrable in the sense of Definition 1.6 with 

B = C.     

Theorem 2.5  shows that Definitions 2.3 and 2.4 give the same collection 

of generalized Riemann integrable functions and the same value for the 

integral. It is important to know that the number C in Definition 2.4 is 
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uniquely determined (when it exists). Because of the importance of this 

uniqueness result, we give its proof here.  

2.5 UNIQUENESS THEOREM 

 

There is at most one number C that satisfies the property in Definition 

2.4. 

Proof. Suppose C C   and let 
1

: 0.
3
C C      If C  satisfies 

Definition 2.4. then there exists a gauge I

  on I such that if P  is a I

 -

fine partition of I, then  ; .S f P C    Similarly, if C

satisfies Definition 2.4, there exists a gauge "

 on I such that if 

P  is a "

 -fine partition of I, then  ; .S f P C    Now let 

: min  ,     so that   is a gauge on I and let P  be a  -

fine partition of I. Then the partition P  is both   -fine and   -

fine. Using the Triangle Inequality, we have  

   ; ; ,C C C S f P S f P C C C               

which is a contradiction. Q.E.D. The next result is a formal 

statement of the fact that the Riemann  

integral is contained in the generalized Riemann integrals of 

Definitions 2.4 and 2.5.  

2.6 CONSISTENCY THEOREM: 

 

Let  : ,I a b  be a compact interval in R and let :f I R . If f 

is R-integrable on I, then f is also integrable on I in the sense 

of Definitions 2.4 and 2.5, and the integrals are equal.  

Proof.  It is immediate that the Riemann integral is a special 

case of the  integral in Definition 2.4. Since we have seen that 

the integrals in Definitions 2.4 and 2.5 are equivalent, the 

assertion follows.Q.E.D.  
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Remarks. (a)  In the following we will discuss mainly the 

generalized Riemann integral. To simplify our terminology, 

unless there is specific mention to the contrary, the words 

"integral", "integrable", etc., refer to the generalized 

Riemann integral of Definitions 1.6 and 1.7. When other  

notions of the integral are intended, they will be specifically 

mentioned; in  this connection we may refer to the 

generalized Riemann integral as the  R*-integral.  

(b) The Consistency Theorem asserts that if a function is R-

integrable, then the values of the R-integral and the R*-

integral are equal. Thus we may safely denote the value of the 

integrals of such a function by the same  notation. Therefore, 

we will also denote the R*-integral by one of the symbols:  

I
f     or   .

b

a
f  

In case it is useful to denote the variable, we will employ the 

notation:  

    .
b b

a a
f x dx or f u du   

This ―calculus notation‖ is useful when we are dealing with a 

function that depends on several parameters. It is also useful in 

connection with the Substitution Theorems that will be 

discussed in Section 13. However, its use in the Substitution 

Theorem has the danger that one sometimes resorts to a blind 

"juggling of symbols", rather than a careful application of a 

theorem.  

More on Terminology  

The definition of the integral given by the great German 

mathematician Bernhard Riemann (1826-1866) is essentially 

Definition 2.3. The Definition 2.5 was independently by 

Kurzweil and Henstock; therefore it  would be entirely 

appropriate to call this integral the "Kurzweil-Henstock 

integral" and some authors use this terminology (or some 

version of it) —  others call it the "gauge integral" , etc. 
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However, it is a remarkable fact that the integral in Definitions 

2.4 and 2.5 also coincides with integrals that  were introduced 

in 1912 by Arnaud Denjoy (1884-1974) and in 1914 by  Oskar 

Perron (1880-1975), although the definitions given by these 

authors  were very different. Thus, it would be appropriate to 

use the term "Denjoy- Perron-Kurzweil-Henstock integral". 

Since that name is quite unwieldy, we will merely say "the 

integral", or the "generalized Riemann integral" as we  

have stated above.  

Why do Gauges Work?  

Before we get down to a development of the integral, it is 

appropriate that we attempt to give an answer to the question: 

Why do nonconstant gauges work better than constant gauges? 

We have already attempted to suggest a reason by our Figure 

1.1 and the accompanying discussion. We will now expand 

somewhat on that discussion.  

(A)  A gauge permits one to enclose a finite or countable set of 

points in a union of intervals that has small total length and so 

does not contribute much to the Riemann sums. 

For example, let  : 0,1f R  be Dirichlet's function defined by 

  : 1f x  if  0,1x    is rational, and   : 0f x    if  0,1x  is 

irrational. Although this function is not R-integrable (see[B-

S;p.204]), it will be seen in Example 2.2(b) that f is R*-

integrable on [0,1] with integral equal to 0. The proof 

involves showing that a gauge   can be constructed that 

will make the Riemann sums for nay  -fine partition less 

that  .This is accomplished by taking   appropriately 

small at the rational points in  0,1 .  It does not  

matter how we define  , at the irrational numbers, since 

  0if t   when it   

is irrational, so these terms make a zero contribution to the 

Riemann sums.  
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(B) A gauge can force one to take a particular point as a tag. 

This can be useful when a particular point is a source of 

difficulty; by choosing it as a tag, one can sometimes control the 

difficulty. 

For example, let   : 1/g x x  when  0,1x  , so that 

 g x   as 0.x   To have the function defined on all of  0,1  

we define g(0) := 0. Since the function g is not bounded, it 

cannot be R-integrable. If we use a gauge such as that in 

Example 1.3(c) that forces the first tag 1 0,t   then the first 

term in any corresponding Riemann sum will be 0. Hence the 

function g on the remaining part of the interval  1,1x  will be 

bounded and continuous, and is more easily handled. 

 (C)  The use of gauges gives an improved Fundamental 

Theorem of Calculus for the R*-integral. 

Suppose that  : ,F a b R   has a derivative  f t  at every point 

 , .t a b  Then, by the definition of the derivative at  , ,t a b  

given 0   there exists   0t   such that if 

   0 , ,x t t x a b    , then 

   
  .

F x F t
f t

x t



 


 

Hence the existence of the derivative on I provides the existence 

of a gauge    on I. It will be shown in Section 4 that if P  is a 

partition of  ,a b   that  is  -fine, the

       ; .F b F a S f P b a     Since 0   is arbitrary,  

this implies that the derivative f F   is R*-integrable on 

 ,a b  to the value     .F b F a  This argument does not 

require the assumption that f is R- (or R*-)integrable. 

2.7 THE LEBESGUE INTEGRAL 
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In fact, there is one more theory of integration that we will 

discuss in this  book; namely the one that was introduced in 

1902 by the French mathematician Henri Lebesgue (1875-

1941). This integral, which we will call  the L-integral or the 

Lebesgue integral, was introduced to correct certain 

"defects" in the R-integral and it has been largely, though not 

totally,  successful.  Certainly the L-integral is the main 

integral used in modern mathematical research, so a serious 

student of mathematics needs to be- come familiar with it. 

However, the L-integral also has certain drawbacks that we 

believe are  largely removed by the R*-integral. Moreover, 

although there are a number of different approaches to the L-

integral, most of them require the investment of a considerable 

amount of time and effort in developing the notion of  

the "measure" of certain subsets of R. For that reason, the 

L-integral is usually regarded as being beyond the reach of 

most undergraduate students of mathematics, and it is very 

largely avoided by almost all physicists and engineers. 

[However, if one is content to work with the L-integral of a  

function defined on an abstract measure space, as is done in 

the theory of probability, then the basic features of the L-integral 

are relatively elementary    1 .see B    

It is a fact that every function that is L-integrable on  ,a b

is *R   integrable.  Of course, we cannot give a proof of this 

assertion without either giving a definition of the L-integral or 

using some of its properties. However, it may be interesting to 

know that E. J. McShane [McS-2, McS-3] has given a 

(surprising) definition of the L-integral that makes it clear that  

the L-integral is a special case of the *R  integral. His 

modification is to use Definition 1.7 with the only change being 

that he does not require the tags it  to belong to the subintervals 

iI  but only to I; however, he continues to re- quire the intervals 

iI  It to be contained in the intervals controlled by the gauge  at 
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it . Clearly, if Definition 1.7 is satisfied for all  -fine Riemann 

auras when  the tags are not required to belong to the 

subintervals, then this definition  is also satisfied by these 

Riemann sums when the tags are required to belong  

to these subintervals. Since it is easier for a function to be 

R*-integrable than to be L-integrable, the L-integral is 

contained in the R*-integral. 

In view of the importance of the L-integral, the question arises 

whether one can identify the L-integrable functions among the 

R*-integrable ones. We will show later that the answer is 

affirmative and that the test is very simple: A function f is L-

integrable if and only if both f and its absolute value If f  are 

R*-integrable. 

Check Your Progress 

1. Prove Equivalence theorem. 

______________________________________________________

______________________________________________________

______________________________________________________ 

2. Prove Uniqueness theorem 

______________________________________________________

______________________________________________________

______________________________________________________ 

3. Prove Consistency theorem 

______________________________________________________

______________________________________________________

______________________________________________________ 

2.8 LET US SUM UP 

 

1. A function  :f I R  is said to be R-integrable (or  

Riemann integrable) on I if there exists a number A R  such 

that for every 0   there exists a number 0   such that if 
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1

: ,
n

i i i
P I t


 is  any tagged partition of I such that  il I   for 

1,...., ,i n  then   ; .S f P A    

2. The collection of all functions that are generalized Riemann integrable 

on an interval I will be denoted by  * .R I  

3. A function :f I R  is said to be generalized Riemann 

integrable on I if there exists a number C R  such that for 

every 0   there exists a gauge  , on I such that if 

  
1

: ,
n

i i i
P I t


  is any tagged partition of I that is  -fine, then 

   1. ; .S f P C    

2.9 KEY WORDS 

 

Riemann integral 

Uniqueness theorem 

Equivalence theorem 

The Lebesque Integral 

2.10 QUESTIONS FOR REVIEW 

 

1. Explain about Generalized Riemann integral. 

2. Prove Uniqueness theorem. 

3. Explain about the Lebesque integral. 

2.11 SUGGESTIVE READINGS AND 

REFERENCES 

 

1. A. Modern theory of Integration - Robert G.Bartle 

2. The elements of Integration and Lebesgue Meassure 

3. A course on integration- Nicolas Lerner 

4. General theory of Integration- Dr. E.W. Hobson 



Notes 

32 

5. General theory of Integration- P.Muldowney 

6. General theory of functions and Integration- Angus   

E.Taylor 

2.12 ANSWERS TO CHECK YOUR 

PROGRESS 

 

1. See section 2.5 

2. See section 2.6 

3. See section 2.7 
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UNIT-3 BASIC PROPERTIES OF THE 

INTEGRAL  
 

STRUCTURE 

3.0 Objective 

3.1 Introduction 

3.2 Theorems on integrals 

3.3 The integral as a Function of Intervals  

3.4 The Squeeze Theorem  

3.5 Characterization of regulated functions 

3.6 Let us sum up 

3.7 Keywords 

3.8 Questions for review 

3.9 Suggestive readings and references 

3.10 Answers to check your progress 

3.0 OBJECTIVE 

 

In this unit we will learn and understand about theorems on integrals,  

The integral as a Function of Intervals, The Squeeze Theorem, 

Characterization of regulated functions 

3.1 INTRODUCTION 

 

We will now establish the most important elementary properties 

of the (generalized Riemann) integral.  Since they are 

formally the same as for the R-integral, the reader will find 

them quite familiar.  E ven the proofs are only slightly 
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different from those for the R-integral, so the reader should 

find most of this section easy reading. 

In this section  : ,i a b denotes any compact interval in . 

However, it will be shown in Part 2 that most (but not all) of 

the results presented here remain true for infinite intervals 

having one of the forms    , , , ,a b   or  , .   For the sake of 

future convenience, we will mark those theorems that remain 

valid with no change in statement by the symbol  , and those 

that require only a minor change in their statements by o. 

However, sometimes a change or supplementary argument is 

needed in the proof for these infinite intervals. 

Although we will be considering functions with values in R, 

some of the exercises will consider functions with values in the 

complex field R. However, it is convenient not to permit the 

functions to take on the extended real values   and .  

3.2 THEOREMS ON INTEGRALS 

 

*3.1 Theorem. (a) If f and g are integrable on I to R, then their sum 

f g  is also integrable on I and  

   3. .
I I I
f g f g       

(b) If f is integrable on I and  ,c R  then cf is integrable on I and     

 3. .
I I
cf c f    

Proof. (a) Let A,B denote the integrals of f,g, respectively. Given 0,    

let ,      be gauges on I such that if the partition 

   1
1

: , ,
n

i i i
i

P x x t


   is   -fine, then  

 
1

; ,
2

S f P A    

and if P is   -fine, then  
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1

; .
2

S g P B    

Now let       : min ,e t t t      so that if a partition P  is  -fine, 

then it is both -fine and   -fine. Since it is easily seen that  

       1
1

;
n

i i i

i

S f g P f g t x x 



     

          1 1

1 1

n n

i i i i i i

i i

f t x x g t x x 

 

      

        ; ; ,S f P S g P   

It is clear that  

        ; ; ;S f g P A B S f P A S g P B         
   

 

           ; ;S f P A S g P B     

      
1 1

.
2 2
      

Since 0    is arbitrary, then  *f g R I    with integral .A B  

 (b) We leave the proof of this assertion to the reader.    

By using mathematical induction, we can extend Theorem 3.1 to the case 

of a linear combination of functions in R*(I). (See Exercise 3.B.)  

   3.2 Theorem. If  *f R I   and   0f x    for all ,x I   then   

 3. 0.
I
f   

Proof. Let    be a gauge on I such that for nay partition ,P    we 

have  ; .
I

S f P f    Since   0f x    for all ,x I   then 

     1
1

; 0.
n

i i i

i

S f P f t x x 



    

Proof.    if  *f R I with integral A, let /2: 0     be a 

gauge on I such that if , .P Q   then  
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1

;
2

S f P A      and    
1

: .
2

S f Q A     

Consequently, we conclude that for such partitions P  and Q , then 

       
1 1

; : ; : .
2 2

S f P S f Q S f P A S f Q A            

   For each n R , let n   be a gauge on I such that if , ,nP Q   

then 

   ; : 1/ .S f P S f Q n   

Evidently we may assume that these gauges satisfy    1n nt t    for 

, ;t I n N   otherwise, we replaces n  by the gauge 

      '
1: min ,...., .n nt t t    

For each n R , let .n nP   Clearly, if ,m n  then both mP  and nP  

are n -fine partitions; hence  

   ; ; 1/n mS f P S f P n         for  .m n  

Consequently, the sequence   
1

; m
m

S f P



 is a Cauchy sequence in R, 

there-fore (see [B-S; p.82]) this sequence converges in  and we let 

 : lim : .m mA S f P  Passing to the limit as m   in the above 

inequality, we have 

 ; 1/nS f P A n    for all    .n R  

We now show that A is the integral of f. indeed, given 0,   let K R  

with 2/ .k   If Q  is an arbitrary k -fine partition, then   

       : : ; ;K KS f Q A S f Q S f P S f P A      

            1/ 1/ .K K     

Since 0    is arbitrary, the function f is integrable to A.   
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3.3 THE INTEGRAL AS A FUNCTION OF 

INTERVALS  

 

We will now show that if a function is integrable over an interval, then it 

is also integrable over any closed subinterval of that interval. In addition, 

the integral is ―additive‖ in the sense of the next theorem.  

Additivity Theorem. Let  : ,f a b R   and let  , .c a b   Then f is 

integrable on  ,a b   if and only if its restrictions to  ,a c   and  ,c b   

are both integrable. In this case we have  

.
b c b

a a c
f f f     

Proof.    Suppose that the restriction 1f  of f to the interval 

 1 : ,I a c  and the restriction 2f  of f to  2 : ,I c b  are integrable to 1A  

and 2,A  respectively. Then, given 0,   there is a gauge 
'
 on 1I  and a 

gauge 
"
  on 2I  such that if 1P  is a 

"
 -fine partition of 2I , then 

 1 1 1

1
;

2
S f P A       and   

  2 2 2

1
; .

2
S f P A    

We define a gauge   on  ,a b  by: 

 

     

    

     

'

' "

"

1
min , , ,

2

: min , ,

1
min , , .

2

t c t if t a c

t c c if t c

t t c if t c b



  





  



  
  

 


 


      

 

Let P  be a partition of  : ,I a b   that is   fine; then the point c must 

be a  tag of at least one subinterval in P , and we may use the right-

left procedure  to arrange that it is in two subintervals, and hence is a 

partition point of P .  Let 1P  be the partition of 1I  consisting of the 
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partition points 1,P I  and let 2P  be the partition of 2I  consisting of the 

partition points 2,P I  so that  

     1 1 2 2; ; ; .S f P S f P S f P   

Since P  is 
'
 -fine and 2P  is 

"
 -fine, we conclude that  

       1 2 1 1 1 2 2 2

1 1
; ; ; .

2 2
S f P A A S f P A S f P A           

 

Since 0   is arbitrary, then f is integrable on I and  3.  holds.  

   Conversely, suppose that f is integrable on I and, for each 0,   let 

  be a gauge satisfying the Cauchy Criterion. As above, let 1f  denote the 

restriction of   to 1,I  and let 1 1,P Q  be partitions of  1,I  that are 
'
 -fine. 

By adjoining additional partition points and tags from 2,I  we can extend 

1P  and 1Q  to partitions P  and Q  of I that are  -fine. If we use the same 

additional points and tags in 2I  for both P and Q , it is easy to see that  

       1 1 1 1; ; ; ; .S f P S f Q S f P S f Q    

But since P  and Q are  -fine, we conclude that 

   1 1 1 1; ; .S f P S f Q    Therefore, the Cauchy Critertion shows that 

the restriction 1f  of f to 1I is integrable on 1I . In the same way, the 

restriction 2f  of f to 2I  is integrable. The equality  3.  now follows 

from the first part of the theorem             Q.E.D. 

The next result is an important one; it will be seen later that the restriction 

of a generalized Riemann integrable function to an arbitrary set is not 

necessarily integrable.  

Corollarly. If    * ,f R a b  and    , , ,c d a b  then the restriction 

of f to  ,c d  is integrable.  

Proof. Indeed, since f is integrable on  ,a b  and  , ,c a b  then it 

follows from the theorem that the restriction of f to  ,c b  is integrable. But 
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if  , ,d c d  another application of the theorem shows that the restriction 

of f to  ,c d  is integrable. (We have used an obvious fact about restrictions 

of restrictions here; see Exercise 3.1.)   

 Corollary. If   * ,f R a b  and if 0 1 ..... ,na c c c b      then 

the restrictions of f to each of the subintervals  1,i ic c  are integrable and  

(3.1)      
11

.
i

i

nb c

a c
i

f f


    

Proof. The assertion was proved for the case  n = 2 in Theorem 3.7. The 

general case follows by using mathematical induction.     

If   * ,f R a b  and  , ,a b    with ,   we have defined f


  

to be the integral of the restriction of f to the subinterval ,  . It is also 

convenient to define this integral for arbitrary values of  , , .   a b  

Definition. If   * ,f R a b  and  , , , ,    a b  we define  

:
 

 
  f f    and    : 0.




 f  

Theorem. If  ,f R a b  and if , ,    are any numbers in  , ,a b  then  

     ,
  

  
   f f f     

In the sense that the existence of any two of these integrals implies the 

existence of the third integral and the equality  3. .k  

Proof. If any two of the numbers , ,    are equal, then  3.k  holds. Thus 

we may suppose that all three of these numbers are distinct.  For the sake of 

symmetry, we introduce the expression     

 , , : .
  

  
       L f f f  

It is clear that  3.k  holds if and only if  , , 0.   L   Therefore, to 

establish the assertion, we need to show that L = 0 for all six permutations 

of the arguments ,    and .  
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We note that the Additivity theorem 3.7 implies that  , , 0.   L  when 

.     But it is easily seen that both  , ,  L  and  , ,  L  equal

 , ,  L . Moreover, the numbers  

   , , , , ,     L L   And    , ,  L  

Are all equal to  , , .  L  Therefore L vanishes for all possible 

configurations of these three points.             Q.E.D 

3.4 THE SQUEEZE THEOREM  

 

The next result, a consequence of the Cauchy Criterion, is often useful in 

showing that a function is integrable.  

Squeeze Theorem. A function f belongs to  *R I  if and only if for every 

0   there exist functions   and   in  *R I  with 

        x f x x  for all ,x I  and such that  

   3. .     I  

Proof.     If  *f R I  and 0   is given, we can take : : .    f   

   Let 0   be given; then if  ,   f  it follows that for any 

tagged partition P  of I we have  

     ; ; ; .   S P S f P S P  

Since  * , R I  there exists a gauge ' 0   on I such that if 
' ,P  

then  ; ,    IS P  whence it follows that  ; .    I S P  

Similarly there exists a gauge 
" 0   such that if 

" ,P  then 

 ; .    IS P  Now let  ' ": min , ,      so that if ,P then  

 ; ,        I I
S f P  

and if ,Q then  
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 ; .           I I
S f Q  

Adding these inequalities, we obtain  

       2 ; ; 2 ,                I I
S f P S f Q  

Whence we conclude from  3.  that 

     ; ; 2 3 .        IS f P S f Q  

Since 0   is arbitrary, f satisfies the Cauchy Criterion. Therefore f is 

integrable on I.  

Step Functions 

We now establish the integrability of certain important classes of 

functions.  

First, we will discuss step functions, and then turn to more 

complicated  

classes. 

 Definition.  A function :s I   is said to be a step function 

on  : ,I a b  if there exists a partition   
1

1,
n

i i i
c c


  of I and real 

numbers  
1

n

i i



 such that 

   3. is x   for   1, , 1,....., .i ix c c i n    

Remark.   The step function s also has values at the partition 

points which may differ from the values i . For the purposes 

of integration, these values at ic  are totally unimportant, as is 

seen in Exercises 1.R or 3.C. 

Theorem. Every step function on  : ,I a b  is integrable. In 

fact, if s is the step function given by  3. , then 

   1
1

3. .
nb

i i i
a

i

v s c c 



   

Proof: Define is  on I by   :i is x   for  1,i ix c c  and 

  : 0is x  else where one I. We have seen in Example 2.2.(b) 
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and Exercise 2.J hat  *is R I  with integral  1 .i i ic c   

Now apply Theorem 3.1 and induction. Q.E.D. 

Regulated Functions We now introduce an important (and a 

quite inclusive) class of functions on the interval  : ,I a b  

that will be seen to be integrable. It will be shown that 

continuous and monotone functions are contained in this 

class. 

Definition: A function :f I   is said to be regulated on 

 : ,I a b  if for every 0   there exists a step function 

:s I   such that  

     3. f x s x       for all   .x I  

Remark. By letting  1/ ,n n    it is clear that a function 

f is regulated if and only if there is a sequence  
1n n

s



 of step 

functions on I   that converges uniformly to f on I (see 

[B-X; p.229] or Definition 8.2 below).  

Integrability of regulated functions. If  :f I   is a 

regulated function on  : ,I a b  then  *f I .     

Proof. Given 0.   Let :s I  be a step function such that 

 3.  holds. Therefore, we have  

     s x f x s x       for  , .x a b  

If we let    :x s x     and    :x s x     for ,x I  

then the step functions   and   are integrable and 

     x f x x     for .x I  Moreover, since  

   2 2 ,
b b

a a
b a          

It follows from the Squeeze theorem 3.12 that  * .f R I

The following characterization of regulated functions will be 

useful.  
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3.5 CHARACTERIZATION OF 

REGULATED FUNCTIONS.  

 

A function :f I R  is a regulated function if and only if it 

has all of its one-sided limits at every point of the interval 

 : , .I a b  

Proof.    First we note that every step function has one-

sided limits at each point. To prove that a regulated function 

f has the same property, let  , ;c a b  we will prove that f has 

a right hand limit at c. to do so, let 0   be given and let 

 :s I R  be a step function such that  3.  holds. Since s  

is a step function and  limx c s x   exists, there exists 

  0c   such that if   , , ,x y c c c   then    .s x s y   

Therefore, if   , , ,x y c c c   then  

               f x f y f x s x s x s y s y f y           

0 2 .       

But since 0   is arbitrary, the Cauchy criterion implies that the right 

hand limit  limx c f x   exists.  

The existence of left hand limits at  ,c a b  is proved in the same way. 

   Suppose f has all one-sided limits guarantees that given 0,   

there is a gauge   on I such that if t I  and 1 2,y y  are both in 

  , ,t t t  or are both in   , ,t t t   then    1 2 .f y f y    

Now let    1
1

, ,
n

i i i
i

P x x t


   be a   fine partition of I. We define 

   :s z f z   if z is one of the numbers  

0 1 1..... ...... .i i i n na x t x t x t x b           
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On the interval     1, , ,i l i i ix t t t t     we define 

   1

1
:

2
i is x f x t 

 
  

 
  so that 

       1

1
.

2
i if x s x f x f x t 

 
     

 
 

Similarly, on the interval    , , ,i i i i it x t t t     we define 

   
1

: ,
2

i is x f t x

 
  

 
  so that  

       
1

.
2

i if x s x f x f t x 
 

     
 

 

Hence the step function s  satisfies    f x s x     for all .x I   

But since 0    is arbitrary, we conclude that f is a regulated function.     Q.E.D.  

 Integrability of continuous functions :If :f I R   is continuous on 

 : ,I a b   then  * .f R I   

Proof. Since a continuous function on I has a limit at every point of I, 

theorem implies that a continuous function is a regulated function. 

Hence, by previous theorem  a continuous function is integrable on I.          Q.E.D. 

We recall that a function :f I R is said to be increasing (or non-

decreasing) on I if , , , x y I x y  imply that    .f x f y  Similarly, f 

is said to be decreasing (or nonincreasing) on I if , , , x y I x y  imply 

that    .f x f y  A function is said to be monotone on I if it is either 

increasing on I or decreasing on I.  

 Integrability of monotone functions. If : f I R  is monotone on 

 : , ,I a b  then f is regulated and  * .f R I  

Proof. It is known (see [B-S; p.149]) that a monotone function on I has 

one-sided limits at every point of I. It follows from theorem 3.17 that a 

monotone function is a regulated function. Therefore, by Theorem 3.16, 

a monotone function is integrable on I.      

The next result about regulated functions will be used in Section 4.  
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Theorem: The set of points of discontinuity of a regulated function 

: f I R  is a countable subset of  : , .I a b  

Proof. For each ,n R  let : ns I R  be a step function such that  

    1/ nf x s x n    for  .x I  

Since the step function ns  has finite set nD  of points of discontinuity, the 

set 
1

:



 nn

D D  is a countable set in I. We will show that if , c I D  

then c is a point of continuity of f. Indeed, given 0,   choose 1/ ,N  

so that     1/   Nf x s x N  for all .x I  Since Ns  is continuous at 

c, there exists 0   such that if , ,  x c x I  then 

    . N Ns X s c  Combining these estimates, we conclude that if 

, ,  x c x I  then  

                     N N N Nf x f c f x s x s x s c s c f c  

3 .        

Since 0   is arbitrary, then f is continuous at . c I D   

It is easy to see that the product of two integrable functions is not 

necessarily integrable. However, the following partial result is sometimes 

useful; a stronger theorem will be given in 10.12. 

Theorem: Let   * ,f R a b  be bounded below and let g be a regulated 

function on  , .a b  Then the product f. g belongs to   * , .R a b   

Proof. It is evidently enough to consider the case where   0f x  for 

 : , . x I a b  It is also clear that if s is a step function, then f .s is 

integrable. Let 0 
b

a
A f  and let 0.   If g is a regulated function, let 

s  be a step function on I such that     / 2  g x s x A  for all .x I  

If we define       : / 2   x f x s x A  and 

      : / 2   x f x s x A  for all ,x I  then  , *   R I  and it 

follows that  
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       .   x f x g x x    for all  ,x I  

and that  

   / .       I I
A f  

Therefore the Squeeze theorem 3.12 implies that  . * .f g R I

Translations  

We will close this section with a theorem showing that the translation 

(either additive or multiplicative) of an R*-integrable function is R*-

integrable. These results are special instances of the Substitution 

Theorem that will be discussed in Section 13. 

Let  : ,I a b  be a compact interval in R and let .r R  We define the r-

additive translate of I to be the interval  : , ,  rI a r b r  and the r-

additive translate of f to be the function    : rf y f y r  for all . ry I  

Similarly, if 0,r  we define the r-multiplicative translate of I to be the 

interval 
   : , ,
r

I ar br  and the r-multiplicative translate of f to be the 

function 
     : /
r

f z f z r  for all  .
r

z I   (If 0,r  then the 

multiplicative translates can also be defined, except, that the order of the 

points in the interval is reversed.) 

Theorem. (a) If  * ,f R I  then  *r rf R I  and  

 3. . 
r

r
I I

o f f  

(b) If  *f R I  and 0,r  then     *
r r

f R I  and  

   
 

3. .  
r

rI I
f r f  

Proof. (a) Given 0,    let    be a gauge on I such that if 1P   is any 

   fine partition of I, then  1; . IfS f P f  Now define 

   :   s s r  for all  rs I  so that   is a gauge on the interval .rI    

Suppose that    1
1

: , ,



n

i i i
i

Q y y s  is an  -fine partition of ,rI  whence  
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   1 .       i i i i i i is s y s y s s  

If we let : i ix y r  and : , i it s r  then       ,      i i is s r t  so 

that  

   1 ,       i i i i i i it t x t x t t  

Whence   1 1
: , , 


n

i i i i
P x x t  is a   fine partition of I. Since we readily 

see that    ; ; ,rS f Q S f P  we infer that  

   ; ; .    r
I I

S f Q f S f P f  

Since 0   is arbitrary, we conclude that  *r rf R I  and that  3.o  

holds.  

(b) Given 0  , let   be a gauge on I such that if 1P  is any  -fine 

partition of I, then  1; / . IS f P f r  Now defined 

   : /  z r z r  for  
r

z I  so that   is a gauge on  .r
I  

Suppose that    1
1

: , ,



n

i i i
i

u z z u  is a  -fine partition of  r
I , whence  

   1 .       i i i i i i iu u z u z u u  

If we let : /i ix z r  and : / ,i it u r  then       ,     i i iu rt r t  so 

that  

   1 ,       i i i i i i it t x t x t t  

Whence   1 1
: , , ) 


n

i i i i
P x x t  is a   fine partition of I. Since we readily 

see that     ; ; ,
r

S f u rS f P  we infer that  

      ; . ; . / .      r I I
S f u r f r S f P f r r  

Since 0   is arbitrary, then     *
r r

f R I  and  3.  holds.     Q.E.D. 

Exercises  

3.A Write out the details of the proof of Theorem 3.1(b).  
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3.B  Use induction to show that if 1,...., nf f  are in  *R I  and if 1,...., nc c  are 

in R, then the linear combination 
1

:



n

k kk
f c f  belongs to  *R I  and 

1
.


 

n

I k I kk
f c f   

3.C Suppose that  * ,f R I  that : ,g I R  and that    g x f x  a.e. on 

I. Show that  *g R I  and that . I I
g f   [Hint: Consider : . h g f ] 

3.D Suppose that  , *f g R I  and that    f x g x  a.e. on I. Show 

that . I If g  

 3.E If  , *f g R I and    f x g x  a.e. on I, show that . I I
f g  

3.F Suppose that , : ,f g I R   that  *g R I   with 0,I g   and that 

   f x g x   for all .x I  Show that f and f   are integrable and that 

0 .  I I
f f   

3.G Show that the conclusion in Exercise 3.F remains true under the 

hypothesis that    f x g x a.e. on I.  

3.H Write out a proof of the quality      1 1 2 2; ; ; S f P S f P S f P  used in 

the proof of Theorem 3.7. Also, establish the relation 

       1 1 1 1; ; ; ;  S f P S f Q S f P S f Q  that was used in the second 

part of that proof.  

3.I Let  : , f a b R  and let    , , .c d a b  Let 1f  be the restriction 

   , , ,f c b of f to c b  and let 2f  be the restriction  1 , .f c d  Show that 

 2 , .f f c d  

3.J Let   * ,f R a b  and let  , .c a b  If   : 0g x  for  ,x a c  and if 

   :g x f x  for  , ,x c b show that   * ,g R a b  and that 

. 
b b

a c
g f  
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  3.K Suppose that  nf  is a sequence in  *R I  such that    0  nf x f x  

for all ,x I  and  n
I

f n  for all .n R  Show that  * .f R I  

3.L Show that the function   : 1/f x x  for  0,1x  and  0 : 0f  is not in 

 0 : 0f   [Hint: Construct step functions nf  with .nf f ] 

Check your progress 

1. Prove: If    * ,f R a b  and    , , ,c d a b  then the restriction 

of f to  ,c d  is integrable.  

____________________________________________________________

____________________________________________________________

__________________________________________ 

2. Prove: If   * ,f R a b  and if 0 1 ..... ,na c c c b      then 

the restrictions of f to each of the subintervals  1,i ic c  are integrable and  

     
11

.
i

i

nb c

a c
i

f f


    

______________________________________________________

______________________________________________________

______________________________________________________ 

3. Prove: If  ,f R a b  and if , ,    are any numbers in  , ,a b  then  

     ,
  

  
   f f f     

Prove: A function :f I R  is a regulated function if and only 

if it has all of its one-sided limits at every point of the 

interval  : , .I a b
 

______________________________________________________

______________________________________________________

______________________________________________________ 

3.6 LET US SUM UP 
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1. If f and g are integrable on I to R, then their sum f g  is also 

integrable on I and  

   3. .
I I I
f g f g       

 (b) If f is integrable on I and  ,c R  then cf is integrable on I and     

 3. .
I I
cf c f    

2. If  *f R I   and   0f x    for all ,x I   then   

 3. 0.
I
f   

3. Let  : ,f a b R   and let  , .c a b   Then f is integrable on 

 ,a b   if and only if its restrictions to  ,a c   and  ,c b   are both 

integrable. In this case we have  

.
b c b

a a c
f f f     

4. If    * ,f R a b  and    , , ,c d a b  then the restriction of f to 

 ,c d  is integrable.  

5. If   * ,f R a b  and if 0 1 ..... ,na c c c b      then the 

restrictions of f to each of the subintervals  1,i ic c  are integrable and  

      
11

.
i

i

nb c

a c
i

f f


 
  

6. If  ,f R a b  and if , ,    are any numbers in  , ,a b  then  

     
,

  

  
   f f f

    

7. A function :f I R  is a regulated function if and only if 

it has all of its one-sided limits at every point of the interval 

 : , .I a b  

8. Let   * ,f R a b  be bounded below and let g be a regulated 

function on  , .a b  Then the product f. g belongs to   * , .R a b  

3.7 KEY WORDS 
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Regulated function 

Discontinuity of a regulated function 

The integral as a Function of Intervals  

The Squeeze Theorem  

Characterization of regulated functions 

3.8 QUESTIONS FOR REVIEW 

 

1. Discuss about The integral as a Function of Intervals  

2. Prove the Squeeze Theorem  

3. Explain about Characterization of regulated functions 

3.11 SUGGESTIVE READINGS 

AND REFERENCES 

 

1. A. Modern theory of Integration - Robert G.Bartle 

2. The elements of Integration and Lebesgue Meassure 

3. A course on integration- Nicolas Lerner 

4. General theory of Integration- Dr. E.W. Hobson 

5. General theory of Integration- P.Muldowney 

6. General theory of functions and Integration- Angus 

E.Taylor 

3.10 ANSWERS TO CHECK YOUR 

PROGRESS 

 

1. See section 3.4 

2. See section 3.4 

3. See section 3.6 
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UNIT -4 THE FUNDAMENTAL 

THEOREMS OF CALCULUS  
 

STRUCTURE 

4.0 Objective 

4.1 Introduction 

4.2 Definitions related to theorems of calculus 

4.3 Remarks 

4.4 Examples 

4.5 Fundamental theorems of Integrals I 

4.6 Fundamental theorems of Integrals II 

4.7 Let us sum up 

4.8 Key words 

4.9 Questions for review 

4.10 Suggestive readings and references 

4.11 Answers to check your progress 

4.0 OBJECTIVE 

 

In this unit we will learn and understand about theorems related 

fundamental calculus, remarks, examples and Fundamental 

theorems. 

4.1 INTRODUCTION 

 

There are two aspects to what is traditionally called the 

"Fundamental Theorem of Calculus": one part is concerned with 

the integration of derivatives, and the other part with the 

differentiation of integrals. Both aspects will be discussed in 

this section. 
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The reader first encountered the Fundamental Theorem in a 

course on  calculus and learned to evaluate the integral of a 

function f  known to be R-integrable by finding a function F on 

 ,a b  with    ' F x f x  for all  , ,x a b and then evaluating 

   .F b F a  This method — which is essentially due to Newton 

and Leibniz — is the one used to evaluate virtually all 

elementary  integrals (although we will later obtain some 

convergence theorems that can  be also useful). In any case, we 

seldom evaluate integrals directly using the  definition, or by 

calculating Riemann sums. The reader may imagine that,  

since the usual Newton-Leibniz formula enables one to evaluate 

R-integrals,  then a more complicated method will be required 

to evaluate generalized  Riemann integrals. In fact, as we will 

see, the rule for evaluating R* - integrals is the same as for R-

integrals.  

Moreover, since the derivative of a function is  

always generalized Riemann integrable (but not always R-

integrable or even L-integrable), the situation is actually 

simpler for the R*-integral than for the R-integral. 

In this section, we will employ a "spiral" approach and establish 

weaker or more elementary results first, and then establish 

stronger results that require slightly more complicated proofs. 

Primitives and Indefinite Integrals 

Before we state our main theorems, it is convenient to 

introduce some terminology. In the following material, it will 

often be convenient to consider three types of exceptional sets: 

finite sets, countable sets, and null sets. In  doing so, we will 

use the prefixes , , f c  and a  (for almost everywhere). 

4.2 DEFINITIONS OF 

FUNDAMENTAL CALCULUS 

 

 Let  : , I a b R  and let , : .F f I R   
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(a) We say that F is a primitive (or an antiderivative) of f 

on I if the derivative  'F x  exists and    ' F x f x  for all 

.x I  

(b)  We say that F is an a-primitive [respectively, c-

primitive, f-primitive] of f on I if F is continuous on I, and 

there exists a null [respectively, countable, finite] set E of 

points x I  where either  'F x  does not  

exist, or does not equal  f x . The set E is called the 

exceptional set of f .  

 (c) If  *f R I  and u I , then the function : uF I R  defined 

by    4. :  
x

u
u

F x f  

is called the indefinite integral of f with base point u . If 

the base point is the left endpoint (or is well understood) We 

usually do not write the subscript. Any function that differs 

from aF . by a constant is called an indefinite integral of f. 

WARNING.  Some authors use the words "antiderivative", 

"primitive", and "indefinite integral" as synonyms, or make 

distinctions that are slightly different from the ones used here.  

4.3 REMARKS  

 

(a) In Definition 4.1(a) we did not need to assume that F  

is continuous on I, since the existence of its derivative on I 

guarantees this  to be the case. But, in 4.1(b), it is important to 

assume that F is continuous on I. 

(b) For c in an exceptional set E the derivative  'F c  may not 

exist, or  'F c  may exist but not equal  f c . In fact, 

sometimes the function f is not even defined at certain points 

in E; in this case we extend f to be equal to 0 at such points. 
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(c)  If f is integrable on  ,a b , then it follows from Corollary 

3.8 and  Definition 3.10 that the integral in  4.   is defined, so 

Definition 4.1(c) makes sense. Note that we always have 

  0.uF u  

d)  If uF  is the indefinite integral of f with base point u, then 

since       
u

u a
a

F x F x f  for ,x I  it follows that uF  is an 

indefinite integral of f.  

4.4 EXAMPLES  

 

(a) If   : nf x x  for  , , , x a b n R  then    1: / 1 nF x x n  is a 

primitive of f on any interval  , .a b R  It will be seen later 

that F is also the indefinite integral of f with base point 0. 

(b)  If   : 1/g x x   for  0,1 ,x  then g is not defined at x = 0 

so we define  0 : 0g . Further, g is not bounded on  0,1 , so 

its R-integral does not exist. Nevertheless, we will see in 

Example 4.6 that g is R*-integrable.  In any case, it is true that 

the function   : 2G x x  for  0,1x  is an  

f-primitive of g on [0,1] with the (finite) exceptional set E = 

{0}. It will be seen later that G is also the indefinite integral of 

g with base point 0. 

(c) If sgn is the signum function on R defined by  

 

1 0,

sgn : 0 0,

1 0,

 


 
 

if x

x if x

if x

 

then sgn is integrable over any interval  , ,a b R  since its 

restriction to this interval is a step function. It is easy to see 

that the function   :H x x  is an f-primitive of sgn on any 

interval  ,a b  with exceptional set  0E .  
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It is an exercise to show that H is the indefinite integral of 

sgn with base point 0. 

 (d)   Let f be the Dirichlet function introduced in Example 

2.3(a),  which is everywhere discontinuous, yet *R

integrable on  : 0,1 .I  If  we let   : 0F x  for all ,x I  then F 

is a c-primitive of f on I since     ' 0 F x f x  for all 

irrational numbers .x I  Here the exceptional set  E is the set 

of all rational numbers in I, which is a countable set. Also, it is  

easily seen that the zero function F is the indefinite integral of 

f with base  point 0. 

The Straddle Lemma 

We will discuss primitives and indefinite integrals later in this 

section. In order to prove the Fundamental Theorem I, we need a 

lemma that is a direct consequence of the definition of the 

derivative. The reader should observe that the points u, v 

"straddle" the point t; that explains the name given the  

lemma. 

Straddle Lemma. 

 Let : F I R  be differentiable at a point .t I   

Given 0   there exists   0 t  such that if , u v I  satisfy 

    ,       t t u t v t t  then we have  

          '4. .     F v F u F t v u v u  

Proof. By definition of the derivative  'F t   at the point ,t I   

given 0    there exists   0 t   such that if

 0 , ,   z t t z I   then  

   
 ' ,


 



F z F t
F t

z t
 

Hence it follows that  

      '     F z F t F t z t z t  
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For all z I  such that  . z I t  

 In particular, if we pick u t  and v t  in this   Ge t interval 

around t and note that 0 v t  and 0, t u  then on subtracting 

and adding the term    ' ,F t F t t  we have  

      '  F v F u F t v u  

             ' '             F v F t F t v t F u F t F t u t  

             ' '       F v F t F t v t F u F t F t u t  

     .       v t t u v u  

Thus inequality  4.   is proved.  

Integrating Derivatives  

We now establish the first of several versions of the 

Fundamental Theorem that guarantees that the derivative of 

any function on an interval  : ,I a b  is always R*-integrable, 

without imposing further hypotheses on this derivative.  It was 

in order to obtain this result that Denjoy and Perron 

developed their theories of integration. (Stronger results will be 

obtained in Theorems 4.7 and 5.12.) 

4.5. FUNDAMENTAL THEOREM I.  

If  : , f a b R  has a primitive F on  , ,a b  then   * ,f R a b  and  

     4. .  
b

a
f F b F a  

Proof.  Given 0,   let the gauge  ,  be as in the Straddle 

Lemma, and  let    1
1

: , ,



n

i i i
i

P x x t  be a  -fine partition of 

 ,a b . Since 1ix and ix straddle the tag it , it follows from  4.  

that 

          1 1 14. .       i i i i i i iF x F x f t x x x x  
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We wish to estimate the quantity      ; . F b F a S f P  To do 

so we make use of the telescoping sum 

       11 
    

n

i ii
F b F a F x F x  to obtain  

            1 1

1

; . 



       
n

i i i i i

i

F b F a S f P F x F x f t x x  

We use the Triangle inequality, to obtain the inequality  

            1 1

1

; . 



     
n

i i i i i

i

F b F a S f P F x F x f t x x  

It follows from  4.  that the last term is dominated by the 

telescoping sum  

   1

1

. 



  
n

i i

i

x x b a  

Since 0   is arbitrary, we conclude that   * ,f R a b  with 

integral equal to    .F b F a             Q.E.D.  

We can restate the Fundamental Theorem 4.6 as: If 

 : , F a b R is differentiable at every point of  , ,a b  then 

  ' * ,F R a b  and we have    ' . 
b

a
F F b F a  

It is an exercise to show that if F is a primitive on  ,a b  of a 

function f and  , ,u a b  then  F F u  is the indefinite integral 

of f with base point u. 

In the next example, we show that the proof of the Fundamental 

Theorem 4.6 can be modified to permit one point of 

nondifferentiability. These ideas will enable us to strengthen 

4.5. 

Example.  Let   : 1/g x x  for  0,1x  and  0 : 0,g  so that g 

is not bounded on  0,1 . If   : 2G x x  for  0,1 ,x  then G is 

continuous on  0,1  and    ' G x g x  for all  0,1 ,x  but  ' 0G  
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does not exist. Hence  G is an f-primitive (but not a primitive) 

of g on  0,1  with exceptional set   0 .E  

As in the proof of the Straddle Lemma, if  0,1t  and 0,   

let    0 t  be such that the inequality  4.  holds for G. We 

define   20 : / 4   so that if  0 0 v , then

   0 2 .  G v G v  Now let    1
1

: , ,



n

i i i
i

P x x t be a tagged 

partition of I that is   fine. If all of the tags belong to  0,1 , 

then the proof of the Fundamental Theorem 4.6 applies 

without change. However, if the first tag 0,it  then the first 

term in the Riemann sum  ;S g P  is equal to   1 00 0; g x x  

moreover, we have  

        1 0 0 1 10 2 .     iG x G x g x x G x x  

If we apply the argument given in the proof of the 

Fundamental Theorem 4.6 to the remaining terms, we obtain 

        1 1 1 1

2

.  



       
n

i i i i n

i

G x G x g t x x x x  

Therefore, on adding these terms we have 

     1 0 ; 2 .      G G S g P  

Since 0   is arbitrary, we conclude that g is R*-integrable on 

 0,1  and that    
1

0
1 0 2.   g G G  we may write this in the 

form  
1

0
1/ 2, x dx  with the understanding that the integrand 

is given the value 0 at the point where it is not defined. 

Clearly, the argument in Example 4.6 can be extended to any 

integrand f such that there exists a continuous function F on 

 ,a b  such that    'f x F x  for all but a finite number of 

points. We now show that, in fact, a countable number of 

exceptional points is permitted. This yields a significant 

improvement over Theorem 4.6. 
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 Fundamental Theorem I*. If  : , f a b R  has a c-primitive F 

on  ,a b ,  then   * ,f R a b  and  

     4. .  
b

a
f F b F a  

Proof. Let  
1




 k k

E c  be the exceptional set for the c-

primitive F. Since E is countable, it is a null set. In view of 

Exercise 3.C, we may suppose that   0.kf c  

We now define a gauge on  : , .I a b  If 0   and , t I E  be  

as in the Straddle Lemma. If ,t E  then  kt c  for some ;k  

from the continuity of F at ,kc  we choose   0 kc  such that 

    2/ 2   k

kF z F c  

for all z I  that satisfy  . k kz c c . Thus, a gauge   is 

defined on I. 

Now let    1
1

: ,



n

i i i
i

P x x t  be a  -fine partition of I. If none 

of  the tags belongs to E, then the proof given in Theorem 4.5 

applies without change. However, if kc E  is the tag of a 

subinterval  1, ,i ix x then 

      1 1   i i k i iF x F x f c x x  

          1 1      i k k i k i iF x F c F c F x f c x x  

2 2 1/ 2 / 2 0 / 2 .       k k k
 

Now each point of E can be the tag of at most two 

subintervals in ;P  therefore the sum of the terms with it E  

satisfies  

      1 1

1

/ 2 . 


 

 

     
i

k

i i i i i

t E k

F x F x f t x x  

Also, by the Straddle Lemma, the sum of the terms with it E  

satisfies 
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          1 1 1 .   

 

       
i i

i i i i i i i

t E t E

F x F x f t x x x x b a  

 Consequently, when ,P , we have  

       ; 1 .    F b F a S f P b a  

Since 0   is arbitrary, then  *f R I  with integral 

   .F b F a  

Theorem 4.7 can be stated: If F is a c-primitive of f on  ,a b

, then    * ,f R a b  and F is an indefinite integral of f. 

Differentiating Integrals 

We now turn to the part of the Fundamental Theorem that 

discusses the differentiation of an indefinite integral. Here the 

situation is not as definitive as in the first part of the 

Fundamental Theorem.  

However, it is true that an indefinite integral of an R*-

integrable function is continuous on I. (In Exercise 4.K one 

shows that this is true for a bounded function, and the 

general case will be proved in Section 5.) Moreover, it will 

be proved in Section 5 that an indefinite integral F is an a-

primitive of f ; that is,    ' F x f x  almost everywhere on the 

interval. 

For the moment we will focus our attention on the 

differentiation of an indefinite integral at a specific point 

 , .c a b  We will see that (one- 

sided) continuity of f at a point c implies (one-sided) 

differentiability of any indefinite integral at c. We recall that 

saying f has a right hand limit A at  ,c a b  means that given 

0  , there exists 0   with   b c  such that if x belongs to 

 , ,c c then  

   4. .     A f x A  
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We leave it to the reader to formulate the definition of a left 

hand limit  of a function, and to state and prove a "left hand 

version" of the following  result. 

4.6 FUNDAMENTAL THEOREM 

II.  

 

Let   * ,f R a b  and let f have a  

right hand limit A at a point  , .c a b  Then the indefinite 

integral 

  : 
x

u
u

F x f  

has a right hand derivative at c equal to A. 

Proof.  We will consider the case u a  and denote aF  by F, 

leaving the general case as an exercise for the reader. 

Let h satisfy 0 . h  Since f is integrable on the intervals 

   , , , ,a c a c h  and  , c c h  (by Corollary 3.8), we have 

    .


   
c h

c
F c h F c f  Now on the interval  , c c h  the 

function f satisfies  4. ,  so that (see  

Corollary 3.4 and Exercise 3.D) we have 

    . 


   
c h

c
A h f A h . It  

follows that 

   
.

 
 

F c h F c
A

h
 

Since 0   is arbitrary, we conclude that 

   
0

lim ;
 

 


h

F c h F c
A

h
 

this means that F has a right hand derivative  '

F c  at c which 

is equal to A.                          Q.E.D. 
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Corollary.  Let   * ,f R a b  be continuous at  ,c a b . Then 

the indefinite integral uF  of f is differentiable at c and 

   ' .uF c f c  

Proof.  Let  ,c a b . If f is continuous at c, then both the 

left and right limits of f equal  f c . Consequently, both the 

left and right derivatives of uF . at c exist and equal  f c . 

Similarly for the endpoints. We recall from Definition 4.1(c) 

that a function F is said to be an in- definite integral of 

 *f R I  in case  aF F  is a constant function. The  

preceding corollary implies that if f is continuous at a point 

,c I  then      ' ' . aF c F c f c  We can reformulate that 

corollary in the following statement. 

Corollary. Let f be continuous on  : ,I a b . Then any 

indefinite  integral F of f is differentiable on I and 

   ' F x f x  for all .x I  

Proof.  Apply the preceding corollary to each point of I.   

We can restate Corollary 4.10 in the form: If f is continuous 

on  ,a b , then any indefinite integral of f is a primitive of f on 

 ,a b . We now state a much deeper theorem about the 

differentiation of the integral; its proof is delicate and will be 

given in Section 5, where we will give  a complete characterization 

of indefinite integrals of functions in   * , .R a b
 

Check Your Progress  

1. Prove: Let : F I R  be differentiable at a point .t I   

Given 0   there exists   0 t  such that if , u v I  satisfy 

    ,       t t u t v t t  

then we have  

          '4. .     F v F u F t v u v u
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______________________________________________________

______________________________________________________

______________________________________________________ 

2. Prove: If  : , f a b R  has a primitive F on  , ,a b  then 

  * ,f R a b  and  
     4. .  

b

a
f F b F a

 

______________________________________________________

______________________________________________________

______________________________________________________ 

3. Prove: If  : , f a b R  has a c-primitive F on  ,a b ,  then 

  * ,f R a b  and  
     4. .  

b

a
f F b F a

 

_____________________________________________________

_____________________________________________________

_____________________________________________________ 

4. Prove: Let   * ,f R a b  and let f have a  

right hand limit A at a point  , .c a b  Then the indefinite 

integral 
  : 

x

u
u

F x f
has a right hand derivative at c equal to A. 

__________________________________________________

__________________________________________________

__________________________________________________ 

4.7 LET US SUM UP 

 

. Let  : , I a b R  and let , : .F f I R   

(a) We say that F is a primitive (or an antiderivative) of f 

on I if  the derivative  'F x  exists and    ' F x f x  for all 

.x I  

2. Let : F I  be differentiable at a point .t I   

given 0   there exists   0 t  such that if , u v I  satisfy 
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    ,       t t u t v t t  

then we have  

          '4. .     F v F u F t v u v u  

3. If  : , f a b R  has a primitive F on  , ,a b  then   * ,f R a b  

and  

     4. .  
b

a
f F b F a  

4. If  : , f a b R  has a c-primitive F on  ,a b ,  then   * ,f R a b  

and  

     4. .  
b

a
f F b F a  

5. Let   * ,f R a b  and let f have a  

right hand limit A at a point  , .c a b  Then the indefinite 

integral 

  : 
x

u
u

F x f  

has a right hand derivative at c equal to A. 

6. If sgn is the signum function on R defined by  

 

1 0,

sgn : 0 0,

1 0,

 


 
 

if x

x if x

if x

 

then sgn is integrable over any interval  , ,a b R  since its 

restriction to this interval is a step function. It is easy to see 

that the function   :H x x  is an f-primitive of sgn on any 

interval  ,a b  with exceptional set  0E  

4.8 KEY WORDS 

Straddle Lemma 

Step function 

Integrative derivation 
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Sign function 

Fundamental theorem 

4.9 QUESTIONS FOR REVIEW 

 

1. Prove fundamental theorem-1 

2.Prove fundamental theorem-2 

4.10 SUGGESTIVE READINGS 

AND REFERENCES 

1. A. Modern theory of Integration - Robert G.Bartle 

2. The elements of Integration and Lebesgue Meassure 

3. A course on integration- Nicolas Lerner 

4. General theory of Integration- Dr. E.W. Hobson 

5. General theory of Integration- P.Muldowney 

6. General theory of functions and Integration- Angus 

E.Taylor 

4.11 ANSWERS TO CHECK YOUR 

PROGRESS 

 

1. See section 4.3 

2. See section 4.4 

3. See section 4.5
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UNI-5  THE FUNDAMENTAL 

THEOREMS OF CALCULUS -2 
 

STRUCTURE 

5.0 Objective 

5.1 Introduction 

5.2 Fundamental theorem-III 

5.3 The Cantor set 

5.4 A characterization of Indefinite Integrals 

5.5 Let us sum up 

5.6 Key words 

5.7 Questions for review 

5.8 Suggestive readings and references  

5.9 Answers to check your progress 

5.0 OBJECTIVE 

 

In this unit we will learn and understand about Fundamental 

theorem of calculus –III, The Cantor set, A characterization of 

Indefinite Integrals 

5.1 INTRODUCTION 

 

The fundamental theorem of calculus is a theorem that links the concept 

of differentiating a function with the concept of integrating a function. 

The first part of the theorem, sometimes called the first fundamental 

theorem of calculus, states that one of the antiderivatives (also 

called indefinite integral), say F, of some function f may be obtained as 

the integral of f with a variable bound of integration. This implies the 

existence of antiderivatives for continuous functions.[1] 

https://en.wikipedia.org/wiki/Theorem
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Antiderivative
https://en.wikipedia.org/wiki/Antiderivative
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus#cite_note-Spivak-1
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Conversely, the second part of the theorem, sometimes called the second 

fundamental theorem of calculus, states that the integral of a 

function f over some interval can be computed by using any one, say F, 

of its infinitely many antiderivatives. This part of the theorem has key 

practical applications, because explicitly finding the antiderivative of a 

function by symbolic integration avoids numerical integration to 

compute integrals. This provides generally a better numerical accuracy.  

5.2 Fundamental Theorem III. 

 

If  *f R I where  : , ,I a b  then any indefinite integral F is 

continuous on I and is an a-primitive of f on  , .a b  Thus, there 

exists a null set Z I  such that 

     '4. F x f x    for all  . x I Z  

Unfortunately, the-preceding theorem does not assert that an 

indefinite integral of a function   * ,f R a b  is a c-primitive of f ; 

see Example 4.18(c). The next result is a useful one; it 

establishes the existence of a c-primitive for a. large and 

important class of functions. 

Theorem. If  : , f a b R  is a regulated function, then any 

indefinite  integral of f is a c-primitive of f on  , .a b  

Proof. We saw in Theorem 3.20 that if f is a regulated 

function, then there exists a countable set D such that f is 

continuous at every point of I - D.  It follows from 4.11 that 

the indefinite integral    
x

u
u

F x f  is continuous on I, and from 

Corollary 4.9 that it is differentiable at every point  c I D  and 

that    ' .uF c f c  Therefore, uF  is a c-primitive of f on I.    

Some Remarks 

We now offer two sets of remarks that are intended to 

clarify the rather subtle distinction between c-primitives and 

indefinite integrals. 

https://en.wikipedia.org/wiki/Antiderivative
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Numerical_integration
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Remarks. (a) An R*-integrable function always has indefinite 

integrals, and every indefinite integral of a function in R*(I) is 

an a-primitive. 

(b)  An R*-integrable function does not always have a c-

primitive; see Example. However, every continuous function has 

a primitive and every regulated function has a c-primitive. 

(c)  If F is a c-primitive of : ,f I R  then  *f R I  and F 

is an indefinite integral of f. 

(d) If F is an a-primitive of  *f R I , then F need not be an 

indefinite integral of f . 

 Remarks.   In discussing c-primitives, the exceptional set 

(where    ' F x f x  does not hold) is a countable set, while 

in Theorem 4.11 the exceptional set Z is a null set. Now 

every countable set is a null set, but the converse is not true. 

as we will see in Theorem 4.16. It is natural to ask whether 

this gap between a countable set and a null set of exceptional 

points can be bridged. There are two parts to this question: 

(a)  Can we replace Theorem by the assertion: If F is a 

continuous  function on  : ,I a b  and there exists a null set Z 

such that    ' F x f x  for all , x I Z  then   * ,f R a b  and 

   ? 
b

a
f F b F a  [That is, if F is an a-primitive of 

 : , ,f a b R , then is   * ,f R a b  and    ? 
b

a
f F b F a ] 

(b) Can we replace Theorem , by the assertion: If F is an 

indefinite integral of   * , ,f R a b  then there exists a 

countable set C such that  

   ' F x f x  for all ? x I C  [In other words, if F is an 

indefinite  integral of f , then is F a c-primitive of f ?] 

The answer to both of these questions is: No. However, in 

order to establish this claim, we will construct the Cantor set and 
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the Cantor-Lebesgue singular function, both of which will be 

useful later. 

5.3 THE CANTOR SET 

 

We will construct a subset of  : 0,1I  by a process of successively 

removing open middle thirds. We start with I and obtain the set 

1  by removing the open interval 
1 2

,
3 3

 
 
 

 to obtain 

1

1 2
: 0, ,1 .

3 3

   
     

   
 

Next we remove the open middle thirds of the two intervals in 

1  to obtain  

2

1 2 1 2 7 8
: 0, , , ,1 .

9 9 3 3 9 9

       
           

       
 

The set 3  is obtained by removing the middle thirds of each 

of the 22   sets in 2 ; thus 3  consists of 32  closed intervals, 

each having length 
31/ 3 .  Continuing in this way, we obtain n  

as the union of 2n  intervals of the form   / 3 , 1 / 3 .  
n nk k  Note 

the first few stages of this construction, as indicated  in Figure 

5.1. 

Definition. The Cantor set   is the intersection of the 

decreasing sequence of sets , , n n R  obtained in this way. 

Historical note. Recently, K. Hannabuss [Math. Intelligencer 

18 (1996), no. 3, 28-31] has pointed out that what is 

universally called the Cantor set appeared in an 1875 paper by 

H. J. S. Smith, some eight years before Cantor mentioned it. See 

also Hawkins [Hw-1; p. 38]. 
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1

2

3

4

0 1r

r

r

r

 

Figure 5.1 Construction of the Cantor set. 

Theorem.  The Cantor set   is an uncountable null set. 

Proof.  In fact, the set n  is the union of 2n  closed 

intervals, each of which has length 1/ 3n . If 0   is given, let 

0n , be such that   0
2 / 3 .

n
 Since 

0
,  n  then   is contained 

in the union of a finite number of closed  intervals with total 

length  . It follows from Exercise 2.M that   is a null set. 

Assume that   is a countable set and let  : nx n  be 

anenumeration of it. Let 
1I  be the closed interval of length 

1/3 in 
1  such that 1 1.x I  If 2,n let nI  be the first interval 

in 1 n nI  having length 1/ 3n
 such that 1 1.x I  In this way, 

we obtain a nested sequence  nI  of compact  intervals; 

invoking the Nested Intervals Theorem [B-S; p . 46], we obtain 

a  point 
1



 k kz I  such that .z  Since ,k kx I  we conclude 

that  kz x   for all .k  Therefore the above enumeration 

does not exhaust  , and this set is not countable.   We will 

now construct a function  : 0,1  R  that is often useful in 

constructing examples and counterexamples. First let 1  be the 

piecewise linear function with    1 1

1
0 : 0, :

2
   x   for 

1 2
,

3 3

 
  
 

x  and  1 1 : 1.   Next, let 2 be the piecewise linear 

function with  2 0 : 0,   taking the values 1/4,1/2, and 3/4 on 

the intervals 

1 2 1 2 7 8
, , , , , ,

9 9 3 3 9 9
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respectively, and  2 1 : 1.   In general, n  is the piecewise 

linear function with  0 : 0, n   taking the values 

 1/ 2 ,2 / 2 ,....., 2 1 / 2n n n n  on the closed intervals corresponding to 

the intervals that were removed to construct ,n  and with 

 1 : 1. n  By definition, each n , is an increasing (i.e., = 

non- decreasing) continuous function. We claim that this 

sequence of functions converges on  0,1  to a limit function, 

which we call the Cantor-Lebesgue singular function and 

denote by  . (Sometimes the graph of   is called "the Devil's 

staircase" .) 

 

Figure 5.2  Construction of the Cantor-Lebesgue 

singular function.   

Theorem.  The Cantor-Lebesgue singular function 

  : 0,1 R  is continuous and increasing on  0,1  and its 

derivative  ' 0x   for all points  0,1 .x     

Proof.  Since the graphs of n  and 1n  either coincide or lie 

in the same horizontal strips with thickness 1/2 ,n  we have 

   1 1/2nn nx x     for all   , 0,1 .n R x  Therefore, if 

m n  it then 

       
1 1

1 1

1 1
.

2 2

m m

n m k k k n
k n k n

x x x x
 

 
 

           

This implies that the limit  
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   : lim n
n

x x


    

exists and that     11/2nn x x      for all  0,1 .x   

Therefore the sequence  n  converges uniformly on  0,1  to 

 . Since each n is continuous, it follows (see [B-S; p. 234]) 

that A is continuous on  0,1 . Since each n is increasing, we 

also conclude that   is increasing on  0,1 . 

If  0,1 ,X     then there is an open interval containing x  on 

which all of  the functions n are constant (and equal) for 

sufficiently large n. Therefore    is constant on this open 

interval and  ' 0.x      

 Examples. (a)  We return to the question raised in -1.14(a). 

We have seen that the Cantor-Lebesgue singular function   

is a continuous function on  0,1  and that   0X   for all 

 0,1 .x     Since   is a null set, then A is an a-primitive 

of the 0-function on [0. 1]. However,    
1

0
0 1 1 0 ,        

showing that the answer to 5.1.1(a) is: No. 

(b)  We return to the question raised in 4.14(b). We   : 1x   

for  x   and   : 0x   for  0,1 .x      Since the Cantor set 

  is a null set, the  function   is a null function. and Example 

2.6(a) implies that   * 0,R x   and  
0

: 0
x

x     

for all  0,1 .x   Consequently,   0x   for all  0,1x  .  

However,   1x   for ,x   so that    x x   on an 

uncountable null set. 

(c)  The example in (b) shows that, while an integrable 

function does have an a-primitive, it does not always have a c-

primitive. 
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Indeed, if    were a c-primitive of  , then  0 ,     so 

  0x   for all  0,1x  .  But the hypothesis that   is a c-

primitive of   implies that   0x   only on a countable set, 

contrary to the fact that the Cantor set   is not countable. As 

was seen in Theorem 4.16. 

5.4 A CHARACTERIZATION OF 

INDEFINITE INTEGRALS 

 

The remarks just made show that there is some delicacy in the 

identification of indefinite integrals of functions in  *R I . 

However, in Section 5 we will  give a complete characterization 

for indefinite integrals of (generalized Riemann) integrable 

functions. We will see that a function F is the indefinite 

integral of a function in  *R I  if and only if F  s differentiable 

a.e., and that on the null set Z where F is not differentiable, 

the function F satisfies an additional condition which is 

automatically satisfied if Z is a countable set.  

Integration by Parts 

We now give a weak (but often useful) form of the 

Integration by Parts formula. Stronger forms of this result will 

be given in Section 12. 

Theorem. Let F and G be differentiable on  : ,I a b . Then 

FIG belongs to  *R I  if and only if FG' belongs to  *R I . In 

this case, we have 

 4. .
b bb

aa a
F G FG FG      

Proof.  The Product Theorem from calculus asserts that 

   
'

* ,FG R I  and it follows from equation  4.l  that 

 *FG R I   if and only if  * .FG R I  Formula  4.  now 

follows immediately.     
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Some Examples  

We will conclude this section by giving three examples of 

functions that have a c-primitive, but not an f-primitive.  

Examples. (a) Let f be the Dirichlet function defined on 

 0,1  by   : 0f x   if x is irrational, and   : 1f x   if 

 0,1 .x    

It was seen in Example 2.3 (a) that   * 0,1 .f R  It is an 

exercise to show that the zero function   : 0F x   for all 

 0,1x   is a c-primitive of f.  

(b) As in Example 2.7, Let : 1 1/2kkc    for 0,1,...,k   so 

that 0 1 2

1 3
0, , ,.....

2 4
c c c    We let  : 0,1f   be defined 

by  

 

 

 
2 2 1

2 1 2 2

1 , , 0,1,...,

: 0 , , 0,1,...,

0 1.

k k

k k

if x c c k

f x if x c c k

if x



 

  


  
 

 

See Figure 4.3 for a graph of f.  

 

Figure 5.3 Graph of f . 

We will show that   * 0,1f R  by exhibiting a c-primitive 

of f. In fact, we define  : 0,1F   by  

 
   

   
2 2 2 2 1

2 1 2 1 2 2

0 0,

, , 0,1,...,

: , , 0,1,...,

2
1.

3

k k k k

k k k

if x

x c F c if x c c k

f x F c if x c c k

if x
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Thus we have  F x x   for  
1 1

0, ,
2 2

x F x
 

  
 

 for 

 
1 3 3 1 1
, ,

2 4 4 2 4
x F x x x

 
      
 

 for 

 
3 7 1 1 5
, ,

4 8 8 2 8
x F x

 
    
 

  for 
7 15
, ,

8 16
x

 
  
 

  etc. See 

Figure 4.4 for a graph of F.  

An elementary induction argument shows that  

     2 1 2 2 12 1 2 1

1 1
,

2 2
k k kk k

F c F c F c  
     

 

Figure 5.4. Graph of F.  

so that we have  

 2 1 3 2 1

1 1 1 2 1
..... 1 .

2 32 2 4
k k k

F c  

 
      

 
 

We claim that F is continuous on  0,1 . Indeed, this is 

obvious at every point  , .kx c k R  Further, by considering 

the cases 2kc  and 2 1kc   separately, one determines that both 

the left and right hand limits exist at these points and equal 

 2kF c  and  2 1 ,kF c   respectively. To see that F is continuous 

from the left at 1x  , one can show that F is increasing on  0,1  

and that lim    2 1 2/3 1 .kF c F    

From the definition of F it is evident that the derivative 

  1F x    when  2 2 1,k kx c c  , and that   0F x   when 
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 2 1 2 2, .k kx c c   It is also clear that F does not have a two-

sided derivative at any of the points , 0,1,......kc k   Therefore, 

F is a c-primitive of f, but it is not an f-primitive.  

It follows from the Fundamental Theorem 5.3 that 

  * 0,1f R  and that  

   
1

0

2
1 0 .

3
f F F    

(c)  We now consider the function    : cos /x x x   for 

 0,1x   and  0 : 0  . It is clear that   is continuous on  0.1 . 

Moreover,   0a   if and only if 

    : 0 2/ 2 1 : .a E k k      For a graph of   Figure 5.5 

.  

 

Figure 5.5  Graph of  . 

Direct calculation shows that the derivative  0  does not 

exist, since  1/ 1/ ,k k   while   2/ 2 1 0k   .  To 

investigate the existence of  x  elsewhere on  0,1 , we recall 

that the absolute. value function x x  has a derivative equal 

to  sgn x  when 0x  .  Therefore the Chain Rule  

implies that the function  cos /x x  has a derivative 

when x is not  a zero of  cos /x ; that is, when

 2/ 2 1 .x k   The Product Rule for  differentiation then 

shows that   has a derivative for .x E . Moreover, it can be 
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shown that   does not have a derivative when .x E  (For a 

related discussion, see [B-S; p. 163].) 

Thus, if we let    :x x    for x E  and   : 0x   for 

,x E  then   is a c-primitive of ,  whence it follows that 

  * 0,1 .R 
 

Check Your Progress 

1. Prove: If  : , f a b R  is a regulated function, then any 

indefinite integral of f is a c-primitive of f on  , .a b  

__________________________________________________

__________________________________________________

__________________________________________________ 

2. Explain about the Cantor set. 

The Cantor set   is an uncountable null set.
 

__________________________________________________

__________________________________________________

__________________________________________________ 

5.5 LET US SUM UP 

 

1. If  *f R I where  : , ,I a b  then any indefinite integral F is 

continuous on I and is an a-primitive of f on  , .a b  Thus, there 

exists a null set Z I  such that 

     '4. F x f x   for all . x I Z  

2. If  : , f a b R  is a regulated function, then any indefinite  

integral of f is a c-primitive of f on  , .a b  

3. The Cantor set   is an uncountable null set. 

4. The Cantor-Lebesgue singular function   : 0,1 R  is 

continuous and increasing on  0,1  and its derivative  ' 0x   

for all points  0,1 .x     
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5.6 KEY WORDS 

 

The Cantor set 

A characterization of indefinite integrals 

Cantor-Lebesgue singular function 

5.7 QUESTIONS FOR REVIEW 

 

1. Prove fundamental theorem-III 

2. Explain about Cantor set 

3. Explain about a characterization of Indefinite Integrals 

5.8 SUGGESTIVE READINGS AND 

REFERENCES 

 

1. A. Modern theory of Integration - Robert G.Bartle 

2. The elements of Integration and Lebesgue Meassure 

3. A course on integration- Nicolas Lerner 

4. General theory of Integration- Dr. E.W. Hobson 

5. General theory of Integration- P.Muldowney 

6. General theory of functions and Integration- Angus 

E.Taylor 

5.9 ANSWERS TO CHECK YOUR 

PROGRESS 

 

1. See section 5.3 

2. See section 5.4 

3. See section 5.4 

 



80 

UNIT-6 THE SAKS-HENSTOCK 

LEMMA  
 

STRUCTURE 

6.0 Objective 

6.1 Introduction 

6.2 The Saks-Henstock Lemma 

6.3 Saks-Henstock lemma 

6.4 Continuity of the Indefinite integrals 

6.5 Characterization of null functions 

6.6 Let us sum up 

6.7 Key words 

6.8 Questions for review 

6.9 Suggestive readings and references 

6.10 Answers to check your progress 

6.0 OBJECTIVE 
 

In this unit we will learn and understand about The Sakes- Henstock 

lemma, Continuity of the indefinite integrals, Characterization of null 

functions 

6.1 INTRODUCTION 
 

The theory of integration has its ancient and honorable roots in the 

―method of exhaustion‖ that was invented by Eudoxos and greatly 

developed by Archimedes for the purpose of calculating the areas and 
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volumes of geometric figures. The later work of Newton and Leibniz 

enabled this method to grow into a systematic tool for such calculations.  

 As this theory developed, it become less concerned with applications to 

geometry and elementary mechanics, for which it is entirely adequate, 

and more concerned with purely analytic questions, for which the 

classical theory of integration is not always sufficient. Thus a present-

day mathematician is apt to be interested in the convergence of 

orthogonal expansions, or in applications to differential equations or 

probability. For him the classical theory of integration which culminated 

in the Riemann integral has been largely replaced by the theory which 

has grown from the pioneering work of Henri Lebesgue at the beginning 

of this century. The reason for this is very simple: the powerful 

convergence theorems associated with the Lebesgue theory of integration 

lead to more general, more complete, and more elegant results than the 

Riemann integral admits. 

 Lebesque’s definition of the integral enlarges the collection of functions 

for which the integral is defined. Although this enlargement is useful in 

itself, its main virtue is that the theorems relating to the interchange of 

the limit and the integral are valid under less stringent assumptions than 

are required for the Riemann integral. Since one frequently needs to 

make such interchanges, the Lebesque integral is more convenient to deal 

with than the Riemann integral. To exemplify these remarks, let the 

sequence  nf of functions be defined for x 0 by   nx

nf x e / x. It 

is readily seen that the (improper) Riemann integrals 

nx

n
0

e
I dx

x




   

Exist and that  n nlim f x 0  for all x 0.  however, since 

 x 0 nlim f x    for each n, the convergence of the sequence is 

certainly not uniform for x 0.  Although it is hoped that the reader can 

supply the estimates required to show that nI 0,  we prefer to obtain 

this conclusion as an immediate consequence of the Lebesgue 

Dominated Convergence Theorem which will be proves later. As another 
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example, consider the function F defined for t 0 by the (improper) 

Riemann integral 

  2 tx

0
F t x e dx.


   

With a little effort one can show that F is continuous and that its 

derivative exists and is given by 

  3 tx

0
F t x e dx,


   

Which is obtained by differerntiating under the integral sign. Once again, 

this inference follows easily form the Lebesgue Dominated Convergence 

Theorem. 

At the risk of oversimplification, we shall try to indicate the crucial 

difference between the Riemann and the Lebesgue definitions of the 

integral. Recall that an interval in the set R of real numbers is a set which 

has one of the following four forms: 

       a,b x R : x b , a,b x R : a x b ,         

       a,b x R : x b , a,b x R : a x b .         

In each of these cases we refer to a and b as the endpoints and prescribe 

b-a as the length of the interval. Recall further that if E is a set, then the 

characteristic function of E is the function EX  defined by 

 EX x 1, if x E,

0, if x E.

 

 
 

A step function is a function which is a finite linear combination of 

characteristic functions of intervals; thus 

n

j Ej

j 1

c X .


   

If the endpoints of the interval 
j j jE area ,b ,we define the integral of  

to be 
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n

j j j

j 1

c b a .


    

If f is a bounded function defined on an interval  a,b  and if f is not too 

discontinuous, then the Riemann integral of f is defined to be the limit (in 

an appropriate sense) of the integrals of step functions which 

approximate f. In particular, the lower Riemann integral of f may be 

defined to be the supremum of the integrals of all step functions  such 

that    x f x   for all x in  a,b , and  x 0  for x not in  a,b .  

The Lebesgue integral can be obtained by a similar process, expect that 

the collection of step functions is replaced by a larger class of functions. 

In somewhat more detail, the notion of length is generalized to a suitable 

collection X of subsets of R. Once this is done, the step functions are 

replaced by simple functions, which are funite linear combinations of 

characteristic functions of sets belonging to X. If 

n

j Ej

j 1

c X


   

Is such a simple function and if  E  denotes the ―measure‖ or 

―generalized length‖ of the set E in X, we define the integral of  E  to 

be  

 
n

j j

j 1

c E .


    

If f is a nonnegative function defined on R which is suitably restricted, 

we shall define the (Lebesgue) integral of f to be the supremum of the 

integrals of all simple functions    x f x  for all x in R. The integral 

can then be extended to certain functions that take both signs. 

Although the generalization of the notion of length to certain sets in R 

which are not necessarily intervals has great interest, it was observed in 

1915 by Maurice Frechet that the convergence properties of the 

Lebesgue integral are valid in considerable generality. Indeed, let X be 

any set in which there is a collection X of subsets containing the empty 
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set  and X and closed under complementation and countable unions. 

Suppose that there is a nonnegative measure function   defined on X 

such that   0   and which is countably additive in the sense that  

 j j
j 1

j 1

E E





 
    
 

  

For each sequence  jE  of sets in X which are mutually disjoint. In this 

case an integral can be defined for a suitable class of real-valued 

functions on X, and this integral possesses strong convergence 

properties. 

As we have stressed, we are particularly interested in these convergence 

theorems. Therefore we wish to advance directly toward them in this 

abstract setting, since it is more general and, we believe, conceptually 

simplier than the special cases of integration on the line or in nR .

However, it does require that the reader temporarily accept the fact that 

interesting special cases are subsumed by the general theory. 

Specifically, it requires that he accept the assertion that there exists a 

countably additive measure function that extends the notion of the length 

of an interval. The proof of this assertion if in Chapter 9 and can be read 

after completing Chapter 3 by those for whom the suspense is too great. 

In this introductory chapter we have attempted to provide motivation and 

to set the stage for the detailed discussion which follows. Some of our 

remarks here have been a bit vague and none of them has been proved. 

These defects will be remedied. However, since we shall have occasion 

to refer to the system of extended real numbers, we now append a brief 

description of this system. 

In integration theory it is frequently convenient to adjoin the two 

symbols ,  to the real number system R. (It is stressed that these 

symbols are not real numbers.) We also introduce the convention that 

x     for any x R.  The collection R  consisting of the set 

 R ,   is called the extended real number system. 
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One reason we wish to consider  R is that it is convenient to say that the 

length of the real line is equal to  . Another reason is that we will 

frequently be talking the supremum (= least upper bound) of a set of real 

numbers. We know that a nonempty set A of real numbers which has an 

upper bound also has a supremum (in R). If we define the supremum of a 

nonempty set which does not have an upper bound to be  , then every 

nonempty subset of R  orR  has a unique supremum in R . Similarly, 

every nonempty subset of R  orR has a unique infimum (= greatest 

lower bound) in R . (Some authors introduce the conventions that 

inf ,sup ,       but we shall not employ them.) 

If  nx  is a sequence of extended real numbers, we define the limit 

superior and the limit inferior of this sequence by 

n n
m n m

limsupx inf supx ,


   
 

 

 n n
n mm

liminf x sup inf x .


  

If the limit inferior and the limit superior are equal, then their value is 

called the limit of the sequence. It is clear that this agress with the 

conventional definition when the sequence and the limit belong to R.  

Finally, we introduce the following algebraic operations between the 

symbols and elements x R :  

       

       

   

x x ,

, ,

x x if x 0,

0 if x 0,

if x 0.

          

       

     

 

  

 

It should be notices that we do not define        or    ,    

nor do we define quotients when the denominator is .  

6.2 THE SAKS- HENSTOCK LEMMA  
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The Saks-Henstock Lemma, sometimes called the ―Henstock 

Lemma‖, is of fundamental importance in proving the deeper 

properties of the (generalized Riemann) integral. Henstock [H-5; 

p.197] attributes this result to Saks [S-1; p.214], but its use for 

the general integral is certainly due to Henstock. Our first use of 

this lemma is to prove the continuity of the indefinite integral. 

We will then establish the eifferentiabnility almost everywhere 

of the indefinite integral, announced in Theorem 4.11; however, 

in order to prove this result we also require the important Vitali 

Covering Theorem. Next we give a characterization of null 

functions. Finally, we present a necessary and sufficient 

condition for a function to be an indefinite integral of a function 

in   * , .R a b  

This section contains some rather subtle arguments. The reader 

may want to look over the results and defer a detailed reading 

until a later time.  

The definition of the integral of a function f on  : ,I a b  requires that, 

given 0   there exists a gauge   on I such that if P  is any  -fine 

partition of I, then the Riemann sum  ;S f P  satisfies the inequality 

 ; .
b

a
S f P f    The Saks-Henstock Lemma asserts that the same 

degree of approximation is valid for the difference between any subset of 

terms from this Riemann sum and the sum of the integrals of f over the 

corresponding subintervals. This fact may not seem so surprising when 

the subintervals in the subset of P  consist of abutting intervals. 

However, it is not at all obvious that the result remain true for an 

arbitrary collection of subintervals. Even more surprising is that we can 

replace the absolute value of the sum of these differences by the sum of 

the absolute values and still have essentially the same degree of 

approximation. This, despite the fact that the existence of the integral 

may depend on the subtraction of terms in the Riemann sums.  

6.1. Definition. Let  : ,I a b  be a nondegenerate compact interval.  
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(a) A subpartition of I is a collection  
1

s

j j
J


 of nonoverlapping closed 

intervals in I.  

(b) A tagged subpartition of I is a collection   0
1

,
s

j j
j

P J t


  of 

ordered pairs, consisting of intervals  0 1

s

j j
P J


  that form a 

subpartition of I, and tags j jt J for 1,......., .j s   

(c) If   is a gauge on I, we say that the tagged subpartition 0P  is  -fine 

if    ,j j j j jJ t t t t    
 

 for 1,...., .j s    

(d) If   is a gauge on a subset ,E I  we say that the tagged 

subpartition 0P  is  ,E -fine if all tags jt E  and 

   ,j j j j jJ t t t t    
 

 for 1,...., .j s  

6.2 Remarks. (a) Any subset of a partition of I is a subpartition of I. 

Conversely, it is an exercise to show that if 0  is a subpartition of I, 

then there exists a partition of I of which 0  is a subset.  

(b) If 0P  is a subpartition of I that is  -fine, then it is an exercise to 

show that there exists a  -fine partition of I of which 0P  is a subset.  

(c) Definition 6.1 (d) only requires that   be defined on E, but one can 

set   : 1x   for x I E   and obtain a gauge on all of I.  

If   0 , : 1,...,j jP J t j s   is a tagged subpartition of I, then we let 

 0 1: .s
j jU P J  If  * ,f R I  we define 

     0

1

; :
s

j j

j

S f P f t l J


       and   
 0 1

: ,
j

s

U P J
j

f f


   

Where  l J  denotes the length of the interval J.  

6.3 SAKS-HENSTOCK LEMMA.  
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Let   * ,f R a b   and for 0    let   be a gauge on I such that if 

,P    then   5.       ; .
I

S f P f    

If   0 , : 1,...,j jP J t j s   is any  -fine subpartition of I, then  

 5.    

       
 0

0

1

; .
j

s

j j
J U P

j

f t l J f S f P f 


       

Proof. Let 1,...., mK K   denote closed subintervals in I such that 

   j kJ K   form a partition of I. Our basic strategy is to use the fact 

that f is integrable on each of the intervals  1,...., mK K  and obtain 

partitions of these intervals that are so fine that the sum of their 

contributions is arbitrarily small.  

Now let 0   be arbitrary. Since (by Corollary 3.8) the restriction of f 

to each subinterval  1,....,kK k m  is integrable, there exists a gauge 

,k  on kK  such that if kQ  is a ,k  fine partition of kK , then  

 5.         ; / .
k

k
K

S f Q f m   

Clearly we may assume that    ,k x x     for all .kx K  Now let 

*P  denote the tagged partition 0 1* : ..... mP P Q Q      of I. 

Evidently *P   is   -fine, so that inequality  5.   hold for *P . 

Further, it is clear that  

       0 1; * ; ; ..... ; ,mS f P S f P S f Q S f Q     

 0 1

.... .
mI U P K K

f f f f        

Consequently, we obtain  

  
 0

0;
U P

S f P f   

   
1 1

; * ;
k

m m

k
I K

k k

S f P S f Q f f
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1

; * ; * .
k

m

I K
k

S f P f S f Q f


      

If we use inequalities  5.  and  5.  this last sum is dominated by  

 / .m m       

Since 0   is arbitrary, then  
 0

0; ,
U P

S f P f    as claimed.    Q.E.D. 

We now snow that we can interchange the absolute values and the sum in 

 5.  if we double the possible error.  

6.4. Corollary. With the hypotheses of Lemma 6.3, we have  

 5.        
1

2 .
j

s

j j
J

j

f t l J f 


    

Proof. Let 0P


 be those pairs in 0P  for which     0
i

j j
J

f t l J f  ,  

and let 0P


 be those pairs for which these terms are <0. Now apply the 

Saks-Henstock Lemma to both 0P


 and 0 .P 
 We obtain the inequalities  

        
0 0

,
j j

j j j j
J J

P P

f t l J f f t l J f 
 

       

        
0 0

.
j j

j j j j
J J

P P

f t l J f f t l J f 
 

        

If we add these two terms, then we obtain  5. .   the following result 

will be used in Section 7. 

6.5. Corollary. With the hypotheses of the Saks-Henstock Lemma 6.3, 

we have  

 5.        
1 1

2 .
j

s s

j j
J

j j

f t l J f 
 

     

Proof. One consequence of the Triangle Inequality is that  

.A B A B A B       
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If we take    : j jA f t l J   and : ,
jJ

B f    sum from 1,...., ,j s   

and apply inequality  5. ,   then we obtain  5. .           Q.E.D. 

6.4 CONTINUITY OF THE INDEFINITE 

INTEGRALS  

 

We now give an important application of the Saks-Henstock Lemma: we 

will establish the continuity of the indefinite integrals of an integrable 

function (stated without proof in 4.11). For simplicity we consider here 

only the indefinite integral with the left endpoint a as base point, since 

any other indefinite integral differs from this one by a constant function.  

6.6. Theorem. If f belongs to   * , ,R a b   then the indefinite integral 

  :
x

a
F x f    is continuous on  , .a b  

 Proof. Let  , ;c a b  we will show that F is continuous from the right 

at c. If 0,   let the gauge   on  : ,I a b  be as in the hypothesis of 

the Saks-Henstock Lemma 6.3. We now define a gauge by  

 
 

     

'

1
min , , ,

2:

min , / 1 .

t t c if t I t c
t

c f c if t c










 

  
   

  
  


 

Now let  '0 h c   and let 0P  be the 
'
  fine subpartition 

consisting of the single pair   , , .c c h c  If we apply the Saks-

Henstock Lemma to 0P , we infer that  

  .
c h

c
f c h f 



   

Hence it follows from the fact that   / 1h f c   that  

      2 .
c h

c
F c h F c f f c h    
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Since 0   is arbitrary, the F is continuous from the right at c. In the 

same way we show that F is continuous from the left at any point in 

 , .a b     

The Vitali Covering theorem  

In order to give a proof of the differentiation part of the Fundamental. 

Theorem 4.11 we require a version of the Vitali Covering Theorem, 

which we do not assume to be known to the reader. Therefore a slight 

detour will be needed.  

6.7. Definition. Let  ,E a b  and let F be a collection of 

nondegenerate closed subintervals in  1, 1 .a b   We say that F is a 

Vitali convering for E if for every x E  and every 0s   there exists 

an interval J F  such that x J  and  0 .l J s   

It is clear that if F is a Vitali covering for E, then every point x E  

belongs to infinitely many intervals in F. As an example of a countable 

Vitali covering for the interval  : 0,1 ,I   consider the collection of all 

closed balls  ;1/ ,B r n  where r I R  and  .n R   

6.8. Vitali Covering Theorem.: Let  ,E a b  and let F be a vitali 

covering for E. Then given 0   there exist disjoint intervals 

1,......, pI I  from F and a countable collection of closed intervals 

 : 1,.....iJ i p   in with 

 5.     
1 1

p

i i

i i p

E I J


  

     And  

  
1

.i

i p

l J 


 

  

Therefore, it follows that  

 5.     
1 1

.
p

i i

i i p

E I J


  

   

Proof. We choose 1I F  arbitrarily and suppose that disjoint intervals 

1,..., rI I  from F have already been chosen. If  
1
,

r

ii
E I


  we can take 
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0iJ   for 1i r   and the proof is complete. Otherwise, we let rF  be 

the collection of all intervals I F  that contain points of E and are 

disjoint from each of the intervals 1,...., .rI I  We let  2r b a     be 

the supremum of the lengths of all such intervals ,rI F  and we choose 

1r rI F   such that  1
1

.
2

r rl I    This construction gives an infinite 

sequence of intervals  ,iI  unless E is contained in the union of some 

finite number of these closed intervals.  

Suppose that we obtain an infinite sequence  .iI  Since the intervals iI  

are pairwise disjoint and are contained in the interval  1, 1 ,a b   we 

must have  
1

2ii
l I b a




     (see Exercise 6.J). Therefore, given 

0,   there exists p   such that we have  
1

/5.ii p
l I 



 
  Now 

let 
1

:
p

p ii
D E I


   and let px D  be arbitrary. Since F is a vitali 

covering for E there exists an interval xI F  such that xx I  and 

0x iI I   for all 1,..., ;i p  therefore .x pI F  We claim that the 

interval xI  must intersect at least one interval nI  with .n p  For, if  

0x iI I  for 1,..., ,i n  then x nI F  and we have  0 .x nl I    

But  10 2 ,n nl I    so that lim 0;n n   therefore  0 x nl I    

cannot hold for all .n  Hence let  n x   be the smallest integer n 

such that 0,x nI I   so that  n x p  and, since   1,x n xI F


  we 

have       1 2 .x n x n xl I l I


   Since xI  contains the pint px D  and 

has a point in  ,n xI  the distance form x to the midpoint  n xx  of  n xI  is 

       1 5
.

2 2
x n x n xl I l I l I    Therefore, x belongs to the interval 

 n xJ  with the same midpoint  n xx  as  n xI  and 6 times its length. For 

1,i p   let iJ  be formed from iI  in this way. Since px D  is 

arbitrary, the argument just given implies that  
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 5.      
1 1

.
p

i p i

i i p

E I D J


  

    

Also, since    5i il J l I  for ,i p  we have  
1

.ii p
l J 



 
    Q.E.D. 

The Differentiation Theorem 

We are finally prepared to prove the difficult part of Theorem 4.11. 

6.9 Differentiation Theorem. Let f be integrable on  : ,I a b  and let F 

be an indefinite integral of f. Then there exists a null set Z I such that 

if x I Z   then  'F x  exists and equals  ;f x  thus, F is an a-

primitive of f.  

Proof. As usual, it is enough to handle the indefinite integral F of f with 

base point a.  

We let E be the set of points  ,x a b  such that the right hand 

derivative  'F x  of F either does not exist at x or does not equal  .f x  

We will show that E is a null set, and a similar argument shows that the 

set of points in  ,a b  where F does not have a left hand derivative equal 

to  f x  also is a null set. Since the set Z of points where F does not 

have a derivative equal to  f x  is the union of these two sets, the set Z 

is a null set.  

If F has a right hand derivative    'F x f x   at the point ,x I  then 

for any 0   there exists an 0s   such that if v I  is any number 

with ,x v x s    then  

   
  .

F v F x
f x

v x



 


 

Negating this assertion, if ,x E  then there exists   0x   such that 

for every 0s   there exists a point ,x sv I  with ,x sx v x s    and 

such that  

 5.l      
   

   
,

,

,
x s

x s

F v F x
f x x

v x
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Whence it follows that  

 5.k             , , , .x s x s x sF v F x f x v x x v x        

Fix n R  and let   : : 1/ .nE x E x n    Given 0,   since f is 

integrable, there exists a gauge   on I such that if P  is a   fine 

partition of I, then  

 5.       
1

; / .S f P f n   

 Now let   ,: , : ,0 ;n x s nF x v x E s x       then nF  is a Vitali 

covering for .nE  By the Vitali Covering Theorem there exist intervals 

 1 1 1: , ,...., : ,p p pI x v I x v      in nF  and a sequence  
1i p

J



 of 

closed intervals such that  

 5.    
1 1

p

n i i

i i p

E I J


  

      and  

  
1

.i

i p

l J 


 

  

We now consider the sum  

 5.v

           
1 1

.
i

i

p p
v

i i i i i i i i
x

i i

f x v x f f x v x F v F x
 

          

It follows from  5.k  with   1/ix n   that the sum on the right in 

 5.v  is greater than  

 5.         
1

1/ .
p

i i

i

n v x


  

On the other hand, since  i i i ix v x x    for 1,..., ,i p  the 

ordered pairs   
1

,
p

i i i
I x


 form a subpartition of a   fine partition of I 

for which  5.  holds. Therefore, by Corollarly 6.4 of the Saks-

Henstock Lemma, we conclude that the sum in  5.v  is less than or 
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equal to 2 / .n  If we combine this estimate with  5. ,  we find (after 

multiplying by n) that  

 5.o         
1 1

2 .
i

i

p p
v

i i i i i
x

i i

v x n f x v x f 
 

        

But, in view of  5. ,  we conclude that nE  is contained in a countable 

in a countable union of intervals with total length 3 .  Since 0   is 

arbitrary, it follows that the set nE  is a null set. Therefore, since 

1 nn
E E




  and each nE  is a null set, we conclude that E is a null set.              Q.E.D.  

Theorem 4.11 has now been completely proved.  

6.5 CHARACTERIZATION OF NULL 

FUNCTIONS 

 

We now establish some equivalent properties for a function to be a null 

function in the sense of Definition 2.4(b). 

6.10 Characterization of null functions. Let : I   where 

 : , .I a b  Then the following statements are equivalent:  

 (a)   is a null function on I.  

(b)   is a null function on I.  

(c)  *R I   and 0
r

a
   for every rational .r I   

(d) An indefinite integral   :
x

c
c

x of     vanishes identically on 

I.  

(e)  *R I   and 0.
b

a
   

 (f)  *R I   and 0
b

a
   for all .x I  

Proof.    a b   Since      : 0 : 0 ,x I x x I x       It 

follows that   is a null function if and only if   is a null function.  
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   b c   If   is a null function, example 2.6 (b) implies that   is in 

 * .R I  By Corollarly 3.8, the restriction of    to every subinterval 

 ,a r  is integrable. Since these restrictions are null functions, Example 

2.6(b) implies that 0.
r

a
   

   c d  if  *R I   and   ,
x

c
c

x     then since   0c r   

for all ,r I   it follows from the continuity of c  that it vanishes 

identically on I.  

   d b  if the indefinite integral c  of   vanishes identically, then 

 ' 0c x   for all .x I  By the Differentiation Theorem 6.9, we 

conclude that    ' 0cx x     except for x in some null set. 

Therefore,   is a null function.  

   a e  This assertion follows form Example 2.6 (b) applied to .  

   e f  if  *R I   and 0,
b

a
   then Theorem 3.7 implies 

that the restrictions of   to  ,a x  and  ,x b  are integrable. From 

Theorem 3.2, we have  

0 0.
b x b x

a a x a
           

Therefore 0
x

a
   for all .x I  

   f a The hypothesis is that the indefinite integral of   with base 

point a vanishes identically, whence it follows from the Differentiation  

Theorem 6.9 that   is a null function.      

A characterization of Indefinite Integrals  

We conclude this section by giving a necessary and sufficient condition 

that a function F be an indefinite integral of a function   * , .f R a b  

The reader will see that the proof of the second part of this theorem is 

essentially the same as the proofs of the Fundamental Theorems 4.6 and 

4.7. 
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The following notion was explicitly formulated by Vyborny [V;p.427]. It 

uses the notion of  ,E -fineness of a subpartition given in Definition 

6.1 (d). 

6.11 Definition. A function :F I   is said to have negligible 

variation on a set E I  and we write  1F NV E  if, for every 0   

there exists a gauge   on E such that if   0
1

: , ,
s

j j j
j

P u v t


     is any 

 ,E -fine subpartition of I, then  

 5.         
1

.
s

j j

j

F v F u 


   

It will be seen in the exercises that if  1 ,F NV E  then F is continuous 

at every point of E. Conversely, if C is a countable set in I and 

:F I   is continuous at every point of C, then  1 .F NV C  

However, when Z I  is a null set. Not every continuous function on I 

belongs to  1 .NV Z  For example, the Cantor-Lebesgue singular 

function  : 0,1 ,   introduced in 4.17, is monotone and continuous 

on  0,1 , but it is not in    0,1
.NV   

6.12 Characterization Theorem. A function :G I   is an indefinite 

integral of a function  *f R I  if any only if there exists a null set 

 : ,Z I a b   such that    'G x f x  for all x I Z   and 

 .IG NV Z  In this case, we have  

 5.      
x

a
f G x G a     for all  .x I  

Proof.    If  *f R I  and   : ,
x

a
F x f   then it follows from the 

Differentiation Theorem 6.9 that there exists a null set Z I  such that 

   'F x f x  for all .x I Z   We define 1f  on I by    1 :f x f x  

for x I Z   and  1 : 0f x   for .x Z  It follows from Exercise 3.C 

that  1 *f R I  and that F is also the indefinite integral of 1f  with base 
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point a. Therefore, given 0,   there exists a gauge   on I such that if 

,P   then  

 1 1

1
; .

2

b

a
f S f P    

Now let   0
1

: , ,
s

j j j
j

P u v t


     be any  ,Z -fine subpartition of I. 

Then 0P  is a subset of some  -fine partition P  of I. It follows from 

Corollary 6.4 that  

   1 1

1

.
j

j

s v

j j j
u

j

f t v u f 


     

But since  1 0jf t   and    1

j

j

u

j j
u
f F v F u   for 1,...., ,j s  we 

conclude that    1
.

s

j jj
F v F u 


   Since 0P  is an arbitrary 

 ,Z -fine subpartition of I, we infer that F has negligible variation on 

Z.  

If G is any indefinite integral of f, then  G F G a   so that 

   'G x f x  for all ,x I Z   and since 

       ,j j j jG v G u F v F u    it follows that  1 .G NV Z  Also, 

     F x G x G a   so that equation  5.  results.  

   Suppose that Z is a null set and that  1G NV Z  is differentiable 

on I-Z. We define    ':f x G x  for x I Z   and   : 0f x   for 

.x Z  We will show that  *f R I  and that G is an indefinite 

integral of f.  

Given 0,   we will construct a gauge for f. If ,t I Z   choose 

  0t   as in the Straddle Lemma 4.4 such that if 

     , , ,t u v t t t t         then 

         .G v G u f t v u v u      
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For ,t Z  choose   0t   as required in Definition 6.11. Thus we 

have defined a gauge   on I.  

We now let    
1

: , ,
n

i i i
i

P u v t


  be a  -fine partition of I. Using the 

telescoping sum        
1

,
n

i ii
G b G a G v G u


      it is readily 

seen that  

             
1

; .
n

i i i i ii
G b G a S f P G v G u f t v u


         

We break this sum into sums over terms where it Z   (where 

  0,if t   and over terms where .it I Z   We conclude that this sum 

is  

           
i i

i i i i i i i

t Z t I Z

G v G u G v G u f t v u
  

        

   1 .

i

i i

t I Z

v u b a  
 

       

Since 0   is arbitrary, then  *f R I  and     .
b

a
G b G a f    

Since the same argument can be applied to any interval  , ,a x I  the 

assertion is proved.    

This theorem can be readily used to show that every L-integrable 

function on I belongs to  * ,R I  provided that we known that the 

indefinite integral of an L-integrable function is ―absolutely continuous‖. 

(See Section 14.) Another characterization of the indefinite integral of 

functions in  *R I  is given in the book of Gordon [G-3; p.147], and 

will be mentioned in Section 14. 

Check your progress 

1. Explain the thermo of Continuity of the Indefinite Integrals 

__________________________________________________

__________________________________________________

__________________________________________________ 

2. Explain the The Vitali Covering theorem 
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__________________________________________________________

__________________________________________________________

_________________________________ 

3. Explain the Characterization of Null Functions 

__________________________________________________________

__________________________________________________________

_________________________________ 

6.6 LET US SUM UP 

 

1.  Let  : ,I a b  be a nondegenerate compact interval.  

(a) A subpartition of I is a collection  
1

s

j j
J


 of nonoverlapping closed 

intervals in I.  

(b) A tagged subpartition of I is a collection   0
1

,
s

j j
j

P J t


  of 

ordered pairs, consisting of intervals  0 1

s

j j
P J


  that form a 

subpartition of I, and tags j jt J for 1,......., .j s  

2. Let  ,E a b  and let F be a collection of nondegenerate closed 

subintervals in  1, 1 .a b   We say that F is a Vitali convering for E if 

for every x E  and every 0s   there exists an interval J F  such 

that x J  and  0 .l J s   

3. A function :G I R  is an indefinite integral of a function 

 *f R I  if any only if there exists a null set  : ,Z I a b   such 

that    'G x f x  for all x I Z   and  .IG NV Z  In this case,  

we have  5.      
x

a
f G x G a     for all  .x I  

6.7 KEY WORDS 

 

Sakes –Henstock lemma 
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Indefinite integrals 

Null function 

6.8 QUESTIONS FOR REVIEW 

 

1. Explain about The Sakes- Henstock Lemma 

2. Explain about continuity of the indefinite integrals 

3. Explain about characterization of null functions 

6.9 SUGGESTIVE READINGS AND 

REFERENCES 

 

1. A. Modern theory of Integration - Robert G.Bartle 

2. The elements of Integration and Lebesgue Meassure 

3. A course on integration- Nicolas Lerner 

4. General theory of Integration- Dr. E.W. Hobson 

5. General theory of Integration- P.Muldowney 

6. General theory of functions and Integration- Angus 

E.Taylor 

6.10 ANSWERS TO CHECK YOUR 

PROGRESS 

 

1. See section 6.4 

2. See section 6.4 

3. See section 6.5 
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UNIT-7 MEASURABLE FUNCTIONS 
 

STRUCTURE 

7.0 Objective 

7.1 Introduction 

7.2 Definitions related to  Measurable functions 

7.3 Complex Valued functions 

7.4 Functions between measurable spaces 

7.5 Let us sum up 

7.6 Key words 

7.7 Questions for review 

7.8 Suggestive readings and references 

7.9 Answers to check your progress 

7.0 OBJECTIVE 
 

this unit we will learn and understand about definitions related to 

measurable functions, Complex valued functions, Functions between 

measurable spaces. 

7.1 INTRODUCTION 
 

In developing the Lebesgue integral we shall be concerned with classes 

of real-valued functions defined on a set X. In various applications the 

set X may be the unit interval  I 0,1 consisting of all real numbers x 

satisfying 0 x 1;  it may be the set  N 1,2,3,... of natural 

numbers; it may be the entire real line R; it may be all of the plane; or it 

may be some other set. Since the development of the integral does not 
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depend on the character of the underlying space X, we shall make no 

assumptions about its specific nature. 

 Given the set X, we single out the family X of subsets of 

X which are ―Well-behaved‖ in a certain technical sense. To be precise, 

we shall assume that this family contains the empty set  and the entire 

set X, and that X is closed under complementation and countable unions. 

7.2 DEFINITIONS RELATED TO 

MEASURABLE FUNCTIONS  
 

A family X of subsets of a set X is said to be a   algebra (or a  

field) in case: 

(i) ,X belong to X. 

(ii) If A belong to X, then the complement  A X/A  belongs to X. 

(iii) If  nA  is a sequence of sets in X, then the union 
n 1 nA


  belongs 

to X. 

An ordered pair 
n 1 nA


  consisting of a set X and a 
n 1 nA


   algebra 

X of subsets of X is called a measurable space. Any set in X is called an 

X-measurable set, but when the   algebra X is fixed (as is generally 

the case), the set will usually be said to be measurable. 

The reader will recall the rules of De Morgan: 

(7.1)             A A , A A .   
   

         

It follows from these that the intersection of a sequence of sets in X also 

belongs to X. 

We shall now give some examples of   algebras of subsets. 

7.2 EXAMPLES. (a) Let X be any set and let X be the family of all 

subsets of X. 
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(b) Let X be the family consisting of precisely two subsets of X, namely 

 and X. 

(c) Let  X 1,2,3,...  be the set N of natural numbers and let X consist 

of the subsets  

   , 1,3,5,... , 2,4,6,... , X.  

(d) Let X be an uncountable set and x be the collection of subsets which 

are either countable or have countable complements. 

(e) If 1X and 2X are   algebras of subsets of X, let 3X be the 

intersection of  1X and 2X . It is readily checked that 3X is a   algebra. 

(f) Let A be a nonempty collection of subsets of X. We observe that there 

is a smallest   algebra of subsets of X containing A. To see this, 

observe that the family of all subsets of X is a   algebra containing A 

and the intersection of all the   algebras containing A. This smallest 

  algebra is sometimes called the   algebra generated by A. 

(g) Let X be the set R of real numbers. The Borel algebra is the  

algebra B generated by all open intervals (a,b) in R. Observe that the 

Borel algebra B is also the   algebra generated by all closed intervals 

 a,b in R. Any set in B is called a Borel set. 

(h0 Let X be the set R of extended real numbers. If E is a Borel subset of 

R, let 

(7.2)     1E E ,            2E E ,               

 3E E , ,     and let B  be the collection of all sets 

1 2 3E,E ,E ,E as E varies over B. It is readily seen that B is a   algebra 

and it will be called the extended Borel algebra. 

In the following, we shall consider a fixed measurable space  X,X .  

7.3 DEFINITION. A function f on X to R is said to be X-measurable (or 

simply measurable) if for every real number  the set  
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(7.3)   x X : f x    

Belongs to X. The next lemma shows that we  could have modified the 

form of thesets in defining measurability. 

7.4 LEMMA. The following statements are equivalent for a function f on 

X to R: 

(a) For every R,  the set   A x X : f x     belongs to X. 

(b) For every R, the set   B x X : f x      belongs to X. 

(c) For every R, the set   C x X : f x      belongs to X. 

(d) For every R, the set   D x X : f x      belongs to X. 

PROOF. Since B and A  are complements of each other, statement (a) 

is equivalent to statement (b). Similarly, statements (c) and (d) are 

equivalent. If (a) holds, then 1/nA  belongs to x  for each n and since  

1/n

n 1

C A ,


 



  

It follows that C X.   Hence (a) implies(c). Since 

1/n

n 1

A C ,


 



  

It follows that (c) implies (a). 

7.5 Examples. (a) Any constant function is measureable. For if  f x c  

for all x Xand if c,   then 

  x X : f x ,      

Whereas if c,   then   x X : f x x    . 

b)  If E X,  then the characteristic function EX ,  defined by  

 gX x 1,x E,

0,x E,

 

 
 

is measurable, In fact,   gx X : x x    is either X, E, or  . 
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c) If x is the set R of real numbers, and X is the Borel algebra B, then 

any continous function f on R is Borel measurable (that is, B-

measurable). In fact, if f  is continuous, then   x R : f x    is an 

open set in R and hence is the union of  a sequence of open intervals 

Therefore, it belongs to B. 

d) If  X=R and X=B, then any monotone function is Borel measurable. 

For, suppose that f is monotone increasing in the sense that 'x x  

implies    'f x f x .  Then   x R : f x    consists of a half-line 

which is wither of the form  x R : x a   or the form 

 x R : x a  , or is R or  . 

Certain simple algebraic combinations of measurable functions are 

measurable, as we shall now show. 

7.6 LEMMA. Let f and g be measurable real-valued functions and let c 

be a real number. Then the functions 

2cf, f , f g, fg, f ,  

Are also measurable.  

PROOF: a) If c=0, the statement is trivial. If c 0,  then  

     x X :cf x x X : f x /c X.       
 

The case 
c 0 is handled similarly. 

(b) If 0,  then    2
x X : f x X;     if 0,  then 

   2
x X : f x    

     x X : f x x X : f x .         

(c) By hypothesis, if r is a rational number, then 

     rS x X : f x r x X : g x r         

Belongs to X. Since it is readily seen that  

      rx X : f g x S : r rational ,       

It follows that f g  is measurable. 

(d) Since    
2 21

fg f g f g ,
4
    
 

it follows from parts (a), (b), and 

(c) that fg is measurable. 
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(e) If 0,   then   x X : f x X,    whereas if 0,  then 

        x X : f x x X : f x x X : f x .            

Thus the function f  is measurable. 

If f is any function on X to R, let f and f 
 be the nonnegative functions 

defined on X by  

(7.4)          f x sup f x ,0 ,f x sup f x ,0 .     

The function f   is called the positive part of f and f  is called the 

negative part of f. It is clear that  

(7.5) f f f    and f f f    

And it follows from these identities that 

(7.6)  
1

f f f ,
2

    
1

f f f .
2

    

In view of the preceding lemma we infer that f is measurable if and only 

if   f and f 
are measurable. 

The preceding discussion pertained to real-valued functions defined on a 

measurable space. However, in dealing with sequences of measurable 

functions we often wish to form suprema, limits, etc., and it is technically 

convenient to allow the extended real numbers ,  to be taken as 

values. Hence we wish to define measurability for extended real-valued 

functions and we do this exactly as in Definition 7.3. 

 

7.7 DEFINITION. An extended real-valued function on X is X-

measurable in case that set   x X : f x   belongs to X for each real 

number .  The collection of all extended real-valued X-measurable 

functions on X is denoted by  M X,X . 

Observe that if  f M X,X , then 

     
n 1

x X : f x x X : f x n ,



        

     
n 1

x X : f x x X : f x n ,




 
         

 

So that both of these sets belong to X. 
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The following lemma is often useful in treating extended real-valued 

functions. 

 

7.8 LEMMA. An extended real-valued function f is measurable if and 

only if the sets 

     A x X : f x ,B x X : f x         

Belong to X and the real-valued function 1f defined by 

   1f x f x , if x A B,

0, if x A B,

  

  
 

Is measurable. 

PROOF. If f is in  M X,X ,  it has already been noted that A and B 

belong to X. Let R and 0,  then 

     1x X : f x x X : f x /A.        

If 0,   then  

     1x X : f x x X : f x B.         

Hence 1f  is measurable. 

Conversely, ifA,B X and 1f is measurable, then 

     1x X : f x x X : f x A         

When 0,   and 

     1x X : f x x X : f x /B        

When 0.  Therefore f is measurable. 

 It is a consequence of Lemma 7.6 and 7.8 that if f is in 

 M X,X , then the functions 

2cf,f , f ,f ,f 
 

Also belong to   M X,X . 

The only comment that need be made is that we adopt the  convention 

that  0 0   so that  cf vanished identically when C=0. If f and g 

belong to  M X,X ,  then the sum f g  is not well-denined by the 

formula        f g x f x g x    on the sets. 
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1

2

E x X : f x and g x ,

E x X : f x and g x ,

     

     
 

Both of which belong to X. However, if we define f g  to be zero on 

1 2E E , the resulting function on X is measurable. We shall return to 

the measurability of the product fg after the next result. 

7.9 LEMMA. Let  nf be a sequence in  M X,X  and define the 

functions 

       n nf x inf f x , F x supf x ,   

       * *

n nf x liminf f x , F x limsupf x .   

Then 
* *f,F,f ,andF belong to  M X,X .

 

PROOF. Observe that  

     n
n 1

x X : f x x X : f x ,



         

     n
n 1

x X : F x x X : f x ,



         

So that f and F are measurable when all the nf are. Since 

    *

m
m nn 1

f x sup inf f x ,


  

    *

m
n 1 m n

F x inf supf x ,
 

  

The measurability of 
* *f andF is also established. 

7.10 COROLLARY. If   nf is a sequence in  M X,X which converges 

to f on X, then f is in  M X,X . 

PROOF. In this case      n nf x limf x liminf f x .   

We now return to the measurability of the product f g when f, g belong to 

 M X,X .If n N, let nf be the ―truncation of f‖ defined by  

     

 

 

nf x f x , if f x n,

n, if f x n,

n, iff x n.

 

 

   
 

Let mg be defined similarly. It is readily seen that nf and mg are 

measurable (see Exercise 7.k). It follows from Lemma 7.6 that the 

product nf mg is measurable. Since 
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       m n m
n

f x g x limf x g x , x X,  it follows from Corollary 7.10 

that mfg belongs to   M X,X .Since  

           m
m

fg x f x g x limf x g x , x X,    

Another application of Corollary 7.10 shows that f g belongs to  

 M X,X . 

It has beeb seen that the limit of a sequence of functions in  M X,X

belongs to 
 M X,X .

 We shall now prove that a nonnegative function f 

in  M X,X is the limit of a monotone increasing sequence  n in 

 M X,X . Moreover, each n  can be chosen to be nonnegative and to 

assume only a finite number of real values. 

7.11 LEMMA. If f is a nonnegative function in  M X,X , then there 

exists a sequence  n in  M X,X  such that  

(a)
    n n 10 x x for x X,n N.       

(b) 
   n n 10 x x for x X,n N.     

 

(c) Each n  has only a finite number of real values. 

PROOF. Let n be a fixed natural number. If 
nK 0,1,...,n2 1,  let knE

be the set  

    n n

knE x X : k2 f x k 1 2 ,       

And if 
nk n2 ,  let knE be the set   x X : f x n .   We observe that 

the sets  nknE : k 0,1,...,n2 are disjoint, belong to X, and have 

union equal to X. If we define n to be equal to 
nk2

 on knE ,  then n

belongs to  M X,X .
It is reasily established that the properties (a), (b), 

(c) hold. 

7.3 COMPLEX-VALUED FUNCTIONS 
 

It is frequently important to consider complex-valied functions defined 

on X and to have a notion of measurability for such functions. We 
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observe that if f is a complex-valied function defined on X, then there 

exist two uniquely determined real-valued functions 1 2f , f  such that  

1 2f f if .   

(Indeed,        1 2f x Ref x ,f x Imf x ,for x X.   ) We define the 

complex-valued function f to be measurable if and only fi its real and 

imaginary parts 1f and 2f ,  respectively, are measurable. It is easy to see 

that sums, products, and limits of complex-valued measurable functions 

are also measurable. 

7.4 FUNCTIONS BETWEEN 

MEASURABLE SPACES 
 

In the sequel we shall require the notion of measurability only for real- 

and complex-valued functions. In some work, however, one wishes to 

define measurability for a function f from onw measurable space  X,X  

into another measurable space  Y,Y .  In this case onw says  that f is 

measurable in case the set 

    1f E x X : f x E     

Belong to X for every set E belonging to Y. Although this definition of 

measurability appears to differ from Definition 7.3, it is not difficult to 

show (see Exercise 7.P) that Definition 7.3 is equivalent to this definition 

in the case that Y Rand Y B.   

This definition of  measurability shows very clearly the close analogy 

between the measurable functions on a measurable space and continuous 

functions on a topological space. 

Exercises : 

7.A. show that    
n 1

a,b a 1/n,b 1/n .



   Hence any    

algebra of subsets of R which contains all open intervals also contains 

that any   algebra containing all closed intervals also contains all open 

intervals. 
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7.B. Show that the Borel algebra B is also generated by the collection of 

all half-open intervals  (a,b] x R : a x b .    Also show that B is 

generated by the collection of all half-rays  x R : x a ,a R.    

7.C. Let  nA be a sequence of subsets of subsets of a set X. Let 0E    

and for n N,  let 

n

n k n n n 1

k 1

E A ,F A \E .



   

Show that  nE is a monotone increasing sequence of sets and that  nF

is a disjoint sequence of sets  n mthat is,F F if n m    such that 

n n n

n 1 n 1 n 1

E F A .
  

  

   

7.D. Let  nA  be a sequence of subsets of a set X. If A consists of all 

x X  which belong to infinitely many of the sets nA , show that 

n

m 1 n m

A A .
 

 

 
  

 
 

The set A is often called the limit superior of the sets  nA and denoted 

by lim inf nA . 

7.E.  Let  nA  be a sequence of subsets of a set X. If B consists of all 

x X  which belong to all but a finite number of the sets n,A  show that 

n

m 1 n m

B A .
 

 

 
  

 
 

The set B is often called the limit inferior of the sets  nA  and denoted 

by lim inf nA . 

7.F. If  nE  is a sequence of subsets of a set X which is monotone 

increasing  1 2 3that is,E E E ... ,   show that Lim sup 

n n

n 1

E E




  lim inf nE . 

7.G. If  nF is a sequence of subsets of a set X which is monotone 

decreasing  1 2 3that is,F F F ... ,  
show that
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Lim sup n n

n 1

F F




  lim inf nF . 

7.H. If  nA  is a sequence of  subsets of X, show that  

n nlim inf A limsup A X.     

Give an example of a sequence  nA  such that lim inf nA ,   lim sup 

nA X.  Give an example of a sequence  nA  which is neither 

monotone increasing or decreasing, but is such that 

n n.liminf A limsupA  

When this equality holds, the common value is called the limit of  nA  

and is denoted by lim nA . 

7.I. Give an example of a function f on X to R which is not X-

measurable, but is such that the functions 
2f and f  are X-measureable.  

7.J. If a,b,c are real numbers, let mid  a,b,c denote the ―value in the 

middle.‖ Show that 

mid  a,b,c = inf       sup a,b ,sup a,c ,sup b,c . 

If 1 2 3f ,f ,f  are X-measurable functions on X to R and if g is defined for 

x X by 

        1 2 3g x mid f x ,f x ,f x ,  

Then g is X-measurable. 

7.K. show directly (without using the preceding exercise) that if f is 

measurable and A>0, then the truncation Af defined by. 

     

 

 

Af x f x , if f x A,

A, if f x A,

A, if f x A,

 

 

   

 

is measurable. 

7.L. Let f be a nonnegative X-measurable function on X which is 

bounded (that ism there exists a constant  K such that   0 f x K  for 

all x in X). Show that the sequence  n constructed in Lemma 7.11 

converges uniformly on X to f. 

7.M. Let f be a function defined on a set X with values in a set Y. If E is 

any subset of Y, let 
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    1f E x X : f x E .     

Show that    1 1f ,f Y X.      If E and F are subsets of Y, then  

     1 1 1f E\F f E \f F .    

If  E  is any nonempty collection of subsets of Y, then 

   1 1 1 1f E f E ,f E f E .   

   

   

   
    

   
 

In particular it follows that if Y is a   algebra of subsets of Y, then 

  1f E : E Y  is a   algebra of subsets of X. 

7.N. Let f be a function defined on a set X with values in a set Y. let X be 

a   algebra of subsets of X and let   1Y E Y : f E X .    show 

that Y is a    algebra. 

7.O.  Let  X,X  be a measurable space and f be defined on X to Y. Let 

A be a collection of subsets of Y such that  1f E X  for every E A.  

show that  1f F X   for any set F which belongs to the   algebra 

generated by A. (Hint: Use the preceding exercise.) 

7.P. Let  X,X be a measurable space and f be a real-valued function 

defined on X. show that f is X-measurable if and only if  1f E X   for 

every Borel set E. 

7.Q. Let  X,X be a measurable space, f be an X-measurable function on 

X to R and let  be a continuous function on R to R. Show that the 

composition f,  defined by      f x f x ,     is X-measurable.  

(Hint: If   is continuous, then  1 E B   for each E B .) 

7.R. Let f be as in the preceding exercise and let   be a Borel 

measurable function. Show that f  is X-measurable. 

7.S. Let f be a complex-valued function defined on a measurable space 

 X,X .Show that f is X-measurable if and only if  

    x X : a Ref x b,c Imf x d      

Belong to X for all real numbers a, b, c, d. More generally, f is X-

measurable if and only if  1f G X  for every open set G in the 

complex plane C. 
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7.T. Show that sums, products, and limits of complex-valued measurable 

functions are measurable. 

7.U. Show that a function f on X to R  or toR  is X-measurable if and 

only if the set A  in Lemma 7.4(a) belongs to X for each rational 

number ; or, if and only if the set B  in Lemma 7.4(b) belongs to X for 

each rational number ; etc. 

7.V. A nonempty collection M of subsets of a set X is called a monotone 

class if, for each monotone increasing sequence  nE  in M and each 

monotone decreasing sequence  nF  in M, the sets 

n n

n 1 n 1

E , F
 

 

 

Belong to M. Show that a   algebra is a monotone class. Also, if A is a 

nonempty collection of subsets of X, then there is a smallest monotone 

class class containing A. (This smallest monotone class is called the 

monotone class generated by A.) 

7.W. If A is a nonempty collection of subsets of X, then the   algebra 

S generated by A contains the monotone class M generated by A. Show 

that the inclusion A M S   may be proper. 

Check Your Progress 

1. Prove: The following statements are equivalent for a function f on X to 

R: 

(a) For every  the set belongs to X. 

(b) For every the set  belongs to X. 

(c) For every the set  belongs to X. 

(d) For every the set  belongs to X. 

__________________________________________________

__________________________________________________

__________________________________________________ 

2. Prove: Let be a sequence in  and define the functions 

R,   A x X : f x    

R,   B x X : f x    

R,   C x X : f x    

R,   D x X : f x    

 nf  M X,X
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Then belong to  

3. Prove: If f is a nonnegative function in then there exists a 

sequence in  such that  

(a)
  

(b)  

(c) Each  has only a finite number of real values. 

__________________________________________________

__________________________________________________

__________________________________________________ 

7.5 LET US SUM UP 
 

1. A family X of subsets of a set X is said to be a   algebra (or a  

field) in case: 

(i) ,X belong to X. 

(ii) If A belong to X, then the complement  A X/A  belongs to X. 

(iii) If  nA  is a sequence of sets in X, then the union 
n 1 nA


  belongs 

to X. 

2. The following statements are equivalent for a function f on X to R: 

(a) For every R,  the set   A x X : f x     belongs to X. 

(b) For every R, the set   B x X : f x      belongs to X. 

(c) For every R, the set   C x X : f x      belongs to X. 

(d) For every R, the set   D x X : f x      belongs to X. 

       n nf x inf f x , F x supf x , 

       * *

n nf x liminf f x , F x limsupf x . 

* *f,F,f ,andF  M X,X .

 M X,X ,

 n  M X,X

   n n 10 x x for x X,n N.     

   n n 10 x x for x X,n N.     

n
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3. Let  nf be a sequence in  M X,X  and define the functions 

       n nf x inf f x , F x supf x ,   

       * *

n nf x liminf f x , F x limsupf x .   

Then 
* *f,F,f ,andF belong to  M X,X . 

4. If   nf is a sequence in  M X,X which converges to f on X, then f is 

in  M X,X . 

5. If f is a nonnegative function in  M X,X , then there exists a sequence 

 n in  M X,X  such that  

(a)
    n n 10 x x for x X,n N.       

(b) 
   n n 10 x x for x X,n N.     

 

(c) Each n  has only a finite number of real values. 

7.6 KEY WORDS 
 

Real valued function  

Measurable function 

Borel measurable function 

7.7 QUESTIONS FOR REVIEW 
 

1. Explain about theorems related to definitions related to measurable 

functions. 

2. Explain about complex valued functions 

3. Explain about functions between measurable spaces  

7.8 SUGGESTIVE READINGS AND 

REFERENCES 

 

1. A. Modern theory of Integration - Robert G.Bartle 

2. The elements of Integration and Lebesgue Meassure 

3. A course on integration- Nicolas Lerner 
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4. General theory of Integration- Dr. E.W. Hobson 

5. General theory of Integration- P.Muldowney 

6. General theory of functions and Integration- Angus 

E.Taylor 

 

7.9 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See section 7.3 

2. See lemma 7.9 

3. See lemma 7.11 

 

 

 

   

 

 

 


